Forms and formulas for linear equations

General form of a line: \(Ax + By = C \), where \(A, B, \) and \(C \) are constants, i.e. any real numbers.

Midpoint formula: \(M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \), where \((x_1, y_1) \) & \((x_2, y_2) \) are any two points on the line.

Slope formula: \(m = \frac{y_2 - y_1}{x_2 - x_1} \), where \((x_1, y_1) \) & \((x_2, y_2) \) are any two points on the line.

Slope-intercept form: \(y = mx + b \), \(m \) is the slope and \((0,b) \) is the \(y \)-intercept.

Point-slope form: \(y - y_1 = m(x - x_1) \), \(m \) is the slope and \((x_1, y_1) \) is a point on the line.

Distance formula: \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \), where \((x_1, y_1) \) & \((x_2, y_2) \) are two points on the line.

Pythagorean formula: \(a^2 + b^2 = c^2 \), where \(a \) & \(b \) are the sides of a right triangle and \(c \) is the hypotenuse.

Some facts about linear equations

Positive slope: If \(m > 0 \), then the line falls to the left and rises to the right.

Negative slope: If \(m < 0 \), then the line falls to the right and rises to the left.

Vertical Lines: If a line is vertical, its slope is undefined and it is of the form \(x = c \), where \(c \) is a constant.

Horizontal Lines: If a line is horizontal, its slope is 0 and it is of the form \(y = c \), where \(c \) is a constant.

Parallel lines: If two lines are parallel \((l_1 \parallel l_2) \), then their slopes are equal, i.e. \(m_1 = m_2 \).

Perpendicular lines: If two lines are perpendicular \((l_1 \perp l_2) \), then their slopes are the negative reciprocals of one another, i.e. \(m_1 = -\frac{1}{m_2} \) or equivalently \(m_1 \cdot m_2 = -1 \).

Some facts about systems of linear equations (two equations)

Lines intersect at one point: Slopes are different, the system is consistent and the lines are independent since there is precisely one solution, which is a point on the coordinate plane.

Lines are parallel (do not intersect): Slopes are the same, \(y \)-intercepts are different, the system is inconsistent and the lines are independent since there is no solution, which we can denote as \(\emptyset \).

Lines are the same: Slopes and \(y \)-intercepts are the same, the system is consistent and the lines are dependent since there are an infinite number of solutions, i.e. all real numbers, which we denote as \((-\infty, \infty) \).

Revised 8/23/2012