I. CATALOG INFORMATION
 A. Discipline: MATHEMATICS
 B. Subject Code and Number: MATH M03
 C. Course Title: Intermediate Algebra
 D. Credit Course units:
 Units: 5
 Lecture Hours per week: 5
 Lab Hours per week: 0
 Variable Units: No
 E. Student Learning Hours:
 Lecture Hours:
 Classroom hours: 87.5 - 87.5
 Laboratory/Activity Hours:
 Laboratory/Activity Hours: 0 - 0
 Total Combined Hours in a 17.5 week term: 87.5 - 87.5
 F. Non-Credit Course hours per week
 G. May be taken a total of: X 1 2 3 4 time(s) for credit
 H. Is the course co-designated (same as) another course: No X Yes
 If YES, designate course Subject Code & Number: ________
 I. Course Description:
 Reviews briefly linear equations and inequalities, graphing, factoring, and rational
 expressions. Covers systems of linear equations, rational functions, complex
 fractions, rational exponents and radicals, complex numbers, quadratic
 equations, graphs of parabolas, functions, composition and inverse functions,
 exponential and logarithmic functions.
 J. Entrance Skills
 *Prerequisite: No X Yes Course(s)
 MATH M01 or MATH M01B or 1 year of high school beginning algebra with
 grade of C or better or placement as determined by college's multiple measures
 assessment process.
 *Corequisite: No X Yes Course(s)
 Limitation on Enrollment: No X Yes
 Recommended Preparation: No X Yes Course(s)
K. Other Catalog Information:

MATH M03 is equivalent to MATH M03A and MATH M03B. Unit credit may be received for either MATH M03 or (MATH M03A and MATH M03B), but not both. Students receiving credit in MATH M03 will not receive credit for MATH M04B.

II. COURSE OBJECTIVES

Upon successful completion of the course, a student will be able to:

<table>
<thead>
<tr>
<th></th>
<th>Methods of evaluation will be consistent with, but not limited by, the following types or examples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>solve linear and literal equations for a specified variable.</td>
</tr>
<tr>
<td>2</td>
<td>solve absolute value equations and absolute value inequalities.</td>
</tr>
<tr>
<td>3</td>
<td>determine if a relation is a function using the vertical line test and identify the domain.</td>
</tr>
<tr>
<td>4</td>
<td>graph linear equations and test whether two lines are parallel, perpendicular, or neither.</td>
</tr>
<tr>
<td>5</td>
<td>write the equation of a line in point-slope form, slope-intercept form, and standard form.</td>
</tr>
<tr>
<td>6</td>
<td>solve a system of equations in three variables by substitution or by the elimination method and solve applications.</td>
</tr>
<tr>
<td>7</td>
<td>factor polynomials including the sum and difference of cubes.</td>
</tr>
<tr>
<td>8</td>
<td>evaluate polynomial functions and solve polynomial equations by factoring and using the zero factor property.</td>
</tr>
<tr>
<td>9</td>
<td>simplify rational expressions, perform operations with rational expressions, simplify complex fractions, and determine the domain of a simple rational function.</td>
</tr>
<tr>
<td>10</td>
<td>divide by a polynomial using long division.</td>
</tr>
<tr>
<td>11</td>
<td>solve equations containing rational expressions and applications.</td>
</tr>
<tr>
<td>12</td>
<td>simplify rational exponent expressions using the properties of exponents and convert to radical notation.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 13 | put radical expressions into simplest radical form, perform operations with radicals, solve equations containing radical expressions, and determine domain of a simple radical function.
 | Graded work and exams. |
| 14 | add, subtract, multiply and divide complex numbers.
 | Graded work and exams. |
| 15 | solve quadratic equations by each of the following methods where applicable: factoring, the square root method, completing the square, and the quadratic formula.
 | Graded work and exams. |
| 16 | solve equations that are in quadratic form and solve quadratic equations involving radicals and substitution.
 | Graded work and exams. |
| 17 | solve non-linear inequalities in one variable.
 | Graded work and exams. |
| 18 | graph quadratic functions showing the vertex and intercepts.
 | Graded work and exams. |
| 19 | find the sum, difference, product, quotient, and composition of two functions.
 | Graded work and exams. |
| 20 | identify one-to-one functions and use the horizontal line test to determine whether or not a function is one-to-one, and find the inverse of a one-to-one function.
 | Graded work and exams. |
| 21 | describe the relationship between the function and its inverse geometrically and algebraically.
 | Graded work and exams. |
| 22 | graph exponential and logarithmic functions, and convert equations from exponential form to logarithmic form and vice versa.
 | Graded work and exams. |
| 23 | use logarithmic properties to rewrite logarithmic expressions and solve logarithmic and exponential equations and related applications.
 | Graded work and exams. |

III. COURSE CONTENT

<table>
<thead>
<tr>
<th>Estimated %</th>
<th>Topic</th>
<th>Learning Outcomes</th>
</tr>
</thead>
</table>
| 5.00% | A. Equations, Inequalities, and Problem Solving
1. Review of linear equations and their applications in one variable
2. Formulas and literal equations
3. Absolute value equations and inequalities | 1, 2 |
| 10.00% | B. Graphs and Functions
1. Introduction to linear and non-linear functions
2. Review of graphs of linear equations and slope
3. Equations of linear functions | 3, 4, 5 |
| 5.00% | C. Systems of Equations
1. Review of systems of linear equations in two variables and their applications
2. Solving systems of linear equations in three variables and their applications | 6 |
Course Outline - MATH M03

D. Integer Exponents, Polynomials, and Polynomial Functions
- Review of integer exponents, exponent rules, and conversions in scientific notation
- Review of polynomials and operations on polynomials
- Review of factoring
- Factoring sums and differences of two cubes
- Solving polynomial equations by factoring
- Evaluate polynomial functions

E. Rational Expressions
- Simplifying, adding, subtracting, multiplying, and dividing rational expressions
- Simplifying complex fractions
- Dividing polynomials using long division
- Synthetic division and the remainder theorem (optional*)
- Solving rational equations and applications

F. Radicals, Rational Exponents, and Complex Numbers
- Radicals and radical functions
- Rational exponents
- Simplifying, adding, subtracting, and multiplying radical expressions
- Dividing radical expressions and rationalizing denominators
- Radical equations
- Complex numbers

G. Quadratic Equations and Functions
- Solving quadratic equations by the square root method, completing the square and the quadratic formula
- Solving equations that are quadratic in form
- Non-linear inequalities
- Rational inequalities (optional*)
- Graphing quadratic functions

H. Additional Function Topics
- Sums, differences, products, and quotients of functions
- Composition of functions
- One-to-one functions
- Inverse functions

I. Exponential and Logarithmic Functions
- Exponential functions
- Logarithmic functions
- Properties of logarithms
- Common and natural logarithms
- Exponential and logarithmic equations

*Optional topics should be covered if time allows, but may be omitted without loss of continuity in the mathematics program.

Enrichment topics related to the study of MATH M03 also may be presented by the instructor, if time allows.

IV. TYPICAL ASSIGNMENTS

A. Writing assignments

Writing assignments are required. Possible assignments may include, but are not limited to:

1. homework problems selected from the intermediate algebra textbook where answers require a written explanation of the solution, such as solving a system of linear equations and identifying if the system is consistent or inconsistent, dependent or independent.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>graded assignments: in-class and/or homework assignments, such as factoring a trinomial whose leading coefficient is not equal to 1 requiring complete solutions using both written English and symbolic mathematical language.</td>
</tr>
<tr>
<td>3</td>
<td>short answer problems on exams, such as stating the results for an application problem such as solving a motion problem requiring input of distance, rate and time.</td>
</tr>
</tbody>
</table>

B. Appropriate outside assignments

Appropriate outside assignments are required. Possible assignments may include, but are not limited to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>additional problem sets provided by the instructor, such as practice exercises on simplifying radicals and rationalizing denominators.</td>
</tr>
<tr>
<td>2</td>
<td>graded assignments: in-class and/or homework assignments requiring complete solutions using both written English and symbolic mathematical language.</td>
</tr>
<tr>
<td>3</td>
<td>group or individual projects which require student collaboration including written mathematical answers on paper or on the board.</td>
</tr>
</tbody>
</table>

C. Critical thinking assignments

Critical thinking assignments are required. Possible assignments may include, but are not limited to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>apply analytic techniques for solving mathematical and application problems, such as finding the inverse of a one-to-one function.</td>
</tr>
<tr>
<td>2</td>
<td>compare and contrast methods of solution to mathematical problems, such as solving quadratic equations by more than one method.</td>
</tr>
<tr>
<td>3</td>
<td>describe and apply the algorithmic steps for obtaining the solution to a mathematical problem, such as solving logarithmic equations.</td>
</tr>
</tbody>
</table>

V. METHODS OF INSTRUCTION

Methods of instruction may include, but are not limited to:

- **X** Distance Education – When any portion of class contact hours is replaced by distance education delivery mode (Complete DE Addendum, Section XV)

- **X** Lecture/Discussion

- **☐** Laboratory/Activity

- **X** Other (Specify)

 Introductory lectures to new concepts; review material from previous topics as
related to the current topic; provide detailed step-by-step examples; provide practice problems to develop proper mathematical skills and techniques; provide student interaction for questions and answers; use projects and/or group work to enhance student understanding of the concepts; and discuss application problems.

☐ Optional Field Trips
☐ Required Field Trips

VI. METHODS OF EVALUATION

Methods of evaluation may include, but are not limited to:

☐ Essay Exam ☑ Problem Solving Exam ☐ Objective Exams
☐ Classroom Discussion ☐ Reports/Papers/Journals Projects ☑ Participation
☐ Skill Demonstration ☐ Other (specify)

Quizzes and/or graded work as well as group work will be used to evaluate students for the critical thinking skills needed to solve math problems. Problems must require students to demonstrate analytic skills and the step-by-step details required for the solution.

VII. REPRESENTATIVE TEXTS AND OTHER COURSE MATERIALS

VIII. STUDENT MATERIALS FEES

☐ No ☑ Yes

IX. PARALLEL COURSES

<table>
<thead>
<tr>
<th>College</th>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventura College</td>
<td>MATH V03</td>
<td>Intermediate Algebra</td>
<td>5</td>
</tr>
<tr>
<td>Oxnard College</td>
<td>MATH R014</td>
<td>Intermediate Algebra</td>
<td>5</td>
</tr>
<tr>
<td>College of the Canyons</td>
<td>MATH 070</td>
<td>Intermediate Algebra</td>
<td>5</td>
</tr>
<tr>
<td>CSU Channel Islands</td>
<td>MATH 95</td>
<td>Intermediate Algebra</td>
<td>4</td>
</tr>
<tr>
<td>UC Davis</td>
<td>MAT D</td>
<td>Intermediate Algebra</td>
<td>3</td>
</tr>
</tbody>
</table>

X. MINIMUM QUALIFICATIONS

Courses Requiring a Masters Degree:
Master’s in mathematics or applied mathematics OR Bachelor’s in either of the above AND Master’s in statistics, physics, or mathematics education OR the equivalent.
XI. ARTICULATION INFORMATION

A. Title V Course Classification:
 1. This course is designed to be taken either:
 - [] Pass/No Pass only (no letter grade possible); or
 - [X] Letter grade (P/NP possible at student option)

 2. Degree status:
 Either [X] Associate Degree Applicable; or [] Non-associate Degree Applicable

B. Moorpark College General Education:
 1. Do you recommend this course for inclusion on the Associate Degree General Education list?
 Yes: [X] No: [] If YES, what section(s)?
 - [] A1 - Natural Sciences - Biological Science
 - [] A2 - Natural Sciences - Physical Science
 - [] B1 - Social and Behavioral Sciences - American History/Institutions
 - [] B2 - Social and Behavioral Sciences - Other Social Behavioral Science
 - [] C1 - Humanities - Fine or Performing Arts
 - [] C2 - Humanities - Other Humanities
 - [] D1 - Language and Rationality - English Composition
 - [X] D2 - Language and Rationality - Communication and Analytical Thinking
 - [] E1 - Health/Physical Education
 - [] E2 - PE or Dance
 - [] F - Ethnic/Gender Studies

C. California State University (CSU) Articulation:
 1. Do you recommend this course for transfer credit to CSU? Yes: [] No: [X]

 2. If YES do you recommend this course for inclusion on the CSU General Education list?
 Yes: [] No: [X] If YES, which area(s)?
 - A1 [] A2 [] A3 [] B1 [] B2 [] B3 [] B4 []
 - C1 [] C2 [] D1 [] D2 [] D3 [] D4 [] D5 []
 - D6 [] D7 [] D8 [] D9 [] D10 [] E []

D. University of California (UC) Articulation:
 1. Do you recommend this course for transfer to the UC? Yes: [] No: [X]

 2. If YES do you recommend this course for the Intersegmental General Education Transfer Curriculum (IGETC)? Yes: [] No: [X]
 IGETC Area 1: English Communication
☐ English Composition
☐ Critical Thinking-English Composition
☐ Oral Communication

IGETC Area 2: Mathematical Concepts and Quantitative Reasoning
☐ Mathematical Concepts

IGETC Area 3: Arts and Humanities
☐ Arts
☐ Humanities

IGETC Area 4: Social and Behavioral Sciences
☐ Anthropology and Archaeology
☐ Economics
☐ Ethnic Studies
☐ Gender Studies
☐ Geography
☐ History
☐ Interdisciplinary, Social & Behavioral Sciences
☐ Political Science, Government & Legal Institutions
☐ Psychology
☐ Sociology & Criminology

IGETC Area 5: Physical and Biological Sciences (mark all that apply)
☐ Physical Science Lab or Physical Science Lab only (non-sequence)
☐ Physical Science Lecture only (non-sequence)
☐ Biological Science
☐ Physical Science Courses
☐ Physical Science Lab or Biological Science Lab Only (non-sequence)
☐ Biological Science Courses
☐ Biological Science Lab course
☐ First Science course in a Special sequence
☐ Second Science course in a Special Sequence
☐ Laboratory Activity
☐ Physical Sciences

IGETC Area 6: Language other than English
☐ Languages other than English (UC Requirement Only)
☐ U.S. History, Constitution, and American Ideals (CSU Requirement ONLY)
☐ U.S. History, Constitution, and American Ideals (CSU
A. Sequential course within a discipline.

1. simplify and evaluate algebraic expressions.
2. identify an equation as either conditional, a contradiction, or an identity and determine whether a number satisfies a given equation in one variable.
3. solve first-degree equations in one variable and check the solution.
4. solve applied problems involving first-degree equations in one variable.
5. solve first-degree inequalities in one variable.
6. find the x- and y-intercepts of the graph of a linear equation.
7. find the slope of the line passing through two given points and determine the slope of a line given its graph.
8. graph a linear equation.
9. determine the slope and y-intercept of a line given its equation.
10. write an equation for a line given two points or given one point and the slope.
11. solve systems of linear equations using each of the following methods: graphing method, addition (elimination) method, and the substitution method and solve application problems by solving a system of linear equations in two variables.
12. simplify expressions involving integer exponents using the properties and rules of exponents including the definitions of zero and negative exponents.

II. REVIEW OF LIBRARY RESOURCES

A. What planned assignment(s) will require library resources and use?

The following assignments require library resources:
Textbooks on reserve in the Library. Other textbooks in the Library collection for an assignment that may require additional research for application problems such as current interest rates, motion problems related to science or engineering, or a mixture problem involving percentages. Adequate resources are present in the Library as well as in the Math Center.

B. Are the currently held library resources sufficient to support the course assignment?

YES: [x] NO: []

If NO, please list additional library resources needed to support this course.

III. PREREQUISITE AND/OR COREQUISITE JUSTIFICATION

Requisite Justification for MATH M01

[] A. Sequential course within a discipline.

1. simplify and evaluate algebraic expressions.
2. identify an equation as either conditional, a contradiction, or an identity and determine whether a number satisfies a given equation in one variable.
3. solve first-degree equations in one variable and check the solution.
4. solve applied problems involving first-degree equations in one variable.
5. solve first-degree inequalities in one variable.
6. find the x- and y-intercepts of the graph of a linear equation.
7. find the slope of the line passing through two given points and determine the slope of a line given its graph.
8. graph a linear equation.
9. determine the slope and y-intercept of a line given its equation.
10. write an equation for a line given two points or given one point and the slope.
11. solve systems of linear equations using each of the following methods: graphing method, addition (elimination) method, and the substitution method and solve application problems by solving a system of linear equations in two variables.
12. simplify expressions involving integer exponents using the properties and rules of exponents including the definitions of zero and negative exponents.
13. convert a number written in standard notation to scientific notation and vice versa.

14. determine the degree of a polynomial and simplify, add, subtract, multiply, and divide polynomials.

15. factor a polynomial using the greatest common factor and the grouping method, factor trinomials, and use the difference of squares.

16. solve quadratic equations by factoring.

17. reduce rational expressions to lowest terms and multiply, divide, add, and subtract rational expressions.

☐ B. Standard Prerequisite or Corequisite required by universities.

☐ C. Corequisite is linked to companion lecture course.

☐ D. Prerequisite or Corequisite is authorized by legal statute or regulation.
 Code Section: _________

☐ E. Prerequisite or Corequisite is necessary to protect the students' health and safety.

☐ F. Computation or communication skill is needed.

☐ G. Performance courses: Audition, portfolio, tryouts, etc. needed.

or

Requisite Justification for MATH M01B

X A. Sequential course within a discipline.

1. simplify expressions involving integer exponents using exponent rules and definitions including the product, quotient, power rules for exponents, and the definitions of zero and negative exponents.

2. convert a number written in standard notation to scientific notation and vice versa.

3. determine the degree of a polynomial.

4. simplify, add, subtract, multiply, and divide polynomials.

5. factor out the greatest common factor of a polynomial.

6. factor a polynomial with four terms by grouping.

7. factor trinomials.
8. factor a difference of two squares.
9. reduce rational expressions to lowest terms.
10. multiply, divide, add, and subtract rational expressions.
11. solve rational equations.
12. solve applied problems involving ratio and proportions.
13. solve literal equations.
14. simplify square root expressions to their simplest radical form.
15. add, subtract, multiply, and divide square root expressions.
16. solve quadratic equations by factoring, the square root method, completing the square (optional*), and by the quadratic formula.
17. use quadratic equations to solve applied problems. (optional*)

B. Standard Prerequisite or Corequisite required by universities.

C. Corequisite is linked to companion lecture course.

D. Prerequisite or Corequisite is authorized by legal statute or regulation.
 Code Section: __________

E. Prerequisite or Corequisite is necessary to protect the students' health and safety.

F. Computation or communication skill is needed.

G. Performance courses: Audition, portfolio, tryouts, etc. needed.

or

Requisite Justification for 1 year of high school beginning algebra with grade of C or better
X A. Sequential course within a discipline.

B. Standard Prerequisite or Corequisite required by universities.

C. Corequisite is linked to companion lecture course.

D. Prerequisite or Corequisite is authorized by legal statute or regulation.
E. Prerequisite or Corequisite is necessary to protect the students' health and safety.

F. Computation or communication skill is needed.

G. Performance courses: Audition, portfolio, tryouts, etc. needed.

or

Requisite Justification for placement as determined by college's multiple measures assessment process.

A. Sequential course within a discipline.

B. Standard Prerequisite or Corequisite required by universities.

C. Corequisite is linked to companion lecture course.

D. Prerequisite or Corequisite is authorized by legal statute or regulation.

E. Prerequisite or Corequisite is necessary to protect the students' health and safety.

F. Computation or communication skill is needed.

G. Performance courses: Audition, portfolio, tryouts, etc. needed.

XIV. WORKPLACE PREPARATION
MATH M03: Not Applicable

XV. DISTANCE LEARNING COURSE OUTLINE ADDENDUM

1. Mode of Delivery

Online (course will be delivered 100% online)

Online with onsite examinations (100% of the instruction will occur online, but examinations and an orientation will be scheduled onsite)

Online/Hybrid (a percentage of instruction will be held online and the remaining percentage of instruction will be held onsite)

Lab activities will be conducted onsite

Televideo (Examinations and an orientation will be held onsite)
Teleconference

Other Emporium style instruction (a percentage of instruction will be held online and the remaining percentage of instruction will be held onsite working in a computer lab setting)

2. Need/Justification

Improve General Student Access using Internet-based mathematics applications.

3. Describe how instructors teaching this course will ensure regular, effective contact with and among students.

Using the Course Management System (CMS) adopted by VCCCD, instructors may engage students using the following communication activities:

- Provide students with an opportunity to ask questions of fellow students and the instructor using the "discussion forum" tool provided by the CMS.
- Contact students via email within the CMS, by campus email, and/or MyVCCCD.
- Meet with students for study sessions and online office hours using an online communication tool like CCCConfer utilizing the CMS, where instructors and students may speak with one another using VoIP or phone, and instructors may write the problems for all to see using an online whiteboard. These sessions may be archived so that students who were not able to attend may watch the session at a later time.
- Provide students with an online schedule of class events using the "calendar" tool in the online CMS.
- Use the "announcement" tool to remind students of important assignments and due dates.

4. Describe how instructors teaching this course will involve students in active learning.

Instructors may involve students in active learning in the following activities:

- Students may view video lessons and/or text-based lessons for each learning objective (created by an instructor or by a publishing company).
- Students may complete homework on paper and/or using an interactive online homework system provided by a publishing company.
- Students may test their knowledge with interactive online quizzes provided by a publishing company.
- Students may interact with the instructor and classmates using an online discussion forum to ask questions.
- Students may attend online study sessions using a communication tool through CCCConfer.
- Students may submit questions to the instructor by email.
- Instructor may create student groups or group activities using the CMS.

5. Explain how instructors teaching this course will provide multiple methods of
content representation.

The following represent the methods by which content may be provided for learning:

- Live tutorials using a communication tool like CCCConfer.
- Instructional Videos
- Textbook
- Links to online resources that may include video, quizzes, interactive math games, text explanations, and more.

6. Describe how instructors teaching this course will evaluate student performance.

Students will take problem solving exams in a proctored on-ground environment.

Students may be required to do the following assignments:

- Complete practice problems on paper and/or in an online interactive homework system
- Complete regular online quizzes
- Participate in online discussion forums.

XVI. GENERAL EDUCATION COURSE OUTLINE ADDENDUM

General Education Division of Learning [check all applicable boxes]:

- [] Natural Sciences
 - [] Biological Science
 - [] Physical Science
- [] Social and Behavioral Sciences
 - [] American History/Institutions
 - [] Other Social Science
- [] Humanities
 - [] Fine or Performing Arts
 - [] Other Humanities
- [x] Language and Rationality
 - [] English Composition
 - [x] Communication and Analytical Thinking
- [] Health/Physical Education
- [] Ethnic/Women's Studies

Check either Option 1 or Option 2

- [] OPTION #1: Moorpark College has already received approval from the CSU and/or UC systems for this course to fulfill a GE requirement.
 Note: This option applies only to technical revisions and updated
 OPTION #2: Moorpark College has not received approval from the CSU and/or UC systems for this course to fulfill a GE requirement. This option applies to all new and substantively revised courses.

XVII. STUDENT MATERIALS FEE ADDENDUM
MATH M03: Not Applicable

XVIII. REPEATABILITY JUSTIFICATION TITLE 5, SECTION 55041
MATH M03: Not Applicable

XIX. CURRICULUM APPROVAL
Course Information:
 Discipline: MATHEMATICS
 Discipline Code and Number: MATH M03
 Course Revision Category: Outline Update

Course Proposed By:
 Originating Faculty Cindy Reed 10/12/2017
 Faculty Peer: Rena Petrello 11/01/2017
 Curriculum Rep: Daniel Rubinstein 10/18/2017
 Department Chair: Phillip Abramoff 10/19/2017
 Division Dean: Mary Rees 10/16/2017

Approved By:
 Curriculum Chair: Jerry Mansfield 04/23/2018
 Executive Vice President: _________
 Articulation Officer: Jodi Dickey 04/03/2018
 Librarian: Mary LaBarge 04/03/2018

Implementation Term and Year: Fall 2018

Approval Dates:
 Approved by Moorpark College Curriculum Committee: 04/17/2018
 Approved by Board of Trustees (if applicable): _________
 Approved by State (if applicable): 04/25/2018