I.

CATAI	LOG INFORMATION
A.	Discipline: ASTRONOMY
В.	Subject Code and Number: AST M01
C.	Course Title: An Introduction to Astronomy
D.	Credit Course units:
	Units: 3
	Lecture Hours per week: 3
	Lab Hours per week : 0
	Variable Units : No
E.	Student Learning Hours:
	Lecture Hours:
	Classroom hours: 52.5 - 52.5
	Laboratory/Activity Hours:
	Laboratory/Activity Hours 0 - 0
	Total Combined Hours in a 17.5 week term: 52.5 - 52.5
F.	Non-Credit Course hours per week
G.	May be taken a total of: X 1 2 3 4 time(s) for credit
H.	Is the course co-designated (same as) another course: No X Yes If YES, designate course Subject Code & Number:
I.	Course Description:
	Surveys the origins, history, and accomplishments of the science of astronomy Covers observational astronomy, light, telescopes, the solar system, stars, galaxies, and cosmology.
J.	Entrance Skills
	*Prerequisite: No X Yes Course(s)
	*Corequisite: No X Yes Course(s)
	Limitation on Enrollment: No X Yes
	Recommended Preparation: No Yes X Course(s) MATH M01 or equivalent
	Other: No X Yes

Other Catalog Information:

K.

II. COURSE OBJECTIVES

Upon successful completion of the course, a student will be able to:

		Methods of evaluation will be consistent with, but not limited by, the following types or examples.
1	gain an appreciation for the size, scale, and major celestial objects and constituents of the Universe.	Objective exams Problem solving exams Homework
2	understand the basic physics of light and matter required to explore and model celestial objects.	Objective exams Problem solving exams Homework
3	appreciate the interplay between observations and theory required for scientific progress.	Objective exams Problem solving exams Homework
4	develop three-dimensional spatial visualization and reasoning using examples such as Earth-Moon-Sun dynamics and describing how stars orbit in galaxies.	Objective exams Problem solving exams Homework
5	interpret the data in figures and graphs, such as the Hertzsprung-Russell diagram.	Objective exams Problem solving exams Homework
6	distinguish between direct proportionality and inverse proportionality and evaluate how the resultant quantity changes using simple mathematical relations.	Objective exams Problem solving exams Homework

III. COURSE CONTENT

Estimated %	Topic	Learning Outcomes
Lecture (must tot	al 100%)	
5.00%	The scale of the cosmos and the scientific method	1, 3, 4, 5
5.00%	History of astronomy and Kepler's and Newton's Laws	1, 3, 4, 5, 6
6.00%	Basic physics of light and matter	2, 3, 5, 6
5.00%	Telescopes as tools for astronomy	2, 3, 5
6.00%	Constituents of the solar system and formation of the solar system	1, 4, 5
	The Earth and the Moon, including internal structure, magnetic fields,	

5.00%	and tides	1, 4, 5
5.00%	Terrestrial (Earth-like) planets: Mercury, Venus, Mars	1, 3, 5
5.00%	Jovian (Jupiter-like) planets: Jupiter, Saturn, Uranus, Neptune	1, 3, 5
5.00%	Moons, Rings, and Plutoids	1, 3, 5
6.00%	The Sun including its structure, nuclear fusion, and solar activity	1, 2, 3, 5
7.00%	Properties of stars: determining properties of stars by combining observation and theory, culminating in the Hertzsprung-Russell Diagram	1, 2, 3, 5, 6
5.00%	The interstellar medium and star formation	1, 2, 3, 5
5.00%	Stellar evolution: evolution of low and high mass stars	1, 2, 5
5.00%	Stellar remnants: neutron stars and black holes	1, 2, 5
6.00%	The Milky Way Galaxy: basic structure, formation of the Milky Way, evidence for dark matter and a central super-massive black hole	1, 2, 3, 4, 5
5.00%	Normal and active galaxies: galaxy types, classification, and active galactic nuclei	1, 2, 5
5.00%	Galaxies and dark matter: evidence for dark matter, galaxy collisions, large scale structure in the universe	1, 2, 5
6.00%	Cosmology: expanding universe, models of the universe, universal composition, and the supporting observations	1, 2, 3, 4, 5
3.00%	Life in the universe: scientifically approach the possibility of life elsewhere in the universe	1, 3

IV. TYPICAL ASSIGNMENTS

A. Writing assignments

	Writing assignments are required. Possible assignments may include, but are not limited to:			
ſ		short answer and essay exam questions, such as:		
	1	Briefly describe the basic properties of pulsars; including drawings/figures is encouraged.		
Ī		short answer and essay homework questions, such as:		
	2	What is the principle cause of the seasons on Earth? Give one reason that it cannot be due to the distance from the Sun.		

B. Appropriate outside assignments

Appropriate outside assignments are required. Possible assignments may include, but are not limited to:

1 participate in the scientific endeavor by classifying galaxies from observations made by world-class telescopes through the Galaxy Zoo project.

2 attend star parties, astronomical clubs, astronomy lectures at local universities, and special events at Moorpark College.

C. Critical thinking assignments

Critical thinking assignments are required. Possible assignments may include, but are not limited to:

apply physics principles learned in class to new situations depicted in homework or exam questions. An example would be:

VI.

1	If the temperature of the core of the Sun suddenly increased, describe what would happen in the core and outer layers.
2	interpreting the details behind complex figures and graphs. An example would be:
2	Which type of star has the largest radius?

٧.

	2	2	100° 1 4 6 4 1				
			Which type of star ha	as the	largest radius?		
MET	HOD	S	OF INSTRUCTION	I			
Meth	nods	of i	nstruction may incl	lude,	but are not limited t	to:	
X					ny portion of class code (Complete DE A		•
X	Lect	ture	e/Discussion				
	Lab	ora	tory/Activity				
X		nor		ng phy	ysics concepts and	spatial o	rientation of celestial
X	Opti	ona	al Field Trips				
	Required Field Trips						
	_	_	OF EVALUATION evaluation may in	nclud	e, but are not limi	ted to:	
X] E	ssa	y Exam	X	Classroom Discussion		Skill Demonstration
X	J	rob am	lem Solving เ	X	Reports/Papers/ Journals	X	Participation
X] 0	bje	ctive Exams	X	Projects	X	Other (specify)
	c	- -	ded homework ass	ianm	ents		

Graded nomework assignments.

VII. REPRESENTATIVE TEXTS AND OTHER COURSE MATERIALS

Seeds, Michael A., and Dana Backman. <u>Horizons: Exploring the Universe</u>. 13th ed. Cengage, 2013.

Comins, Neil F. Discovering the Universe. 10th ed. Freeman, 2014.

Fraknoi, Andrew, David Morrison, and Sidney Wolff. Voyages Through the Universe. 3rd ed. Cengage, 2005.

Chaisson, Eric, and Steve McMillan. <u>Astronomy: A Beginner's Guide to the</u> Universe. 7th ed. Addison-Wesley, 2013.

VIII. STUDENT MATERIALS FEES

Χ	No	Yes

XI.

IX. PARALLEL COURSES

College	Course Number	Course Title	Units
CSU Channel	PHYS 107	The Stars and Beyond	3
Islands			
CSU Northridge	ASTR 152	Elementary Astronomy	3
CSU Long Beach	ASTR 100	Astronomy	3
CSU Los Angeles	ASTR 151	Principles of Astronomy	3

X. MINIMUM QUALIFICATIONS

Master	es Requiring a Masters Degree: 's degree in physics, astronomy, or astrophysics OR bachelor's degree in physics or omy AND master's degree in engineering, mathematics, meteorology, or geophysics OR the ent.
ARTIC A. B.	ULATION INFORMATION Title V Course Classification: 1. This course is designed to be taken either: Pass/No Pass only (no letter grade possible); or X Letter grade (P/NP possible at student option) 2. Degree status: Either X Associate Degree Applicable; or Non-associate Degree Applicable Moorpark College General Education: 1. Do you recommend this course for inclusion on the Associate Degree
	General Education list? Yes: X No: If YES, what section(s)? A1 - Natural Sciences - Biological Science X A2 - Natural Sciences - Physical Science B1 - Social and Behavioral Sciences - American History/Institutions B2 - Social and Behavioral Sciences - Other Social Behavioral Science C1 - Humanities - Fine or Performing Arts C2 - Humanities - Other Humanities D1 - Language and Rationality - English Composition D2 - Language and Rationality - Communication and Analytical Thinking E1 - Health/Physical Education E2 - PE or Dance F - Ethnic/Gender Studies
C.	California State University(CSU) Articulation: 1. Do you recommend this course for transfer credit to CSU? Yes: X No: 2. If YES do you recommend this course for inclusion on the CSU General Education list? Yes: X No: If YES, which area(s)?

	A1 []	A2	A3	B1 [X]	B2	B3	B4 _
	C1 [C2	D1 🗌	D2 🗌	D3 🗌	D4 🗌	D5
	D6	D7 🗌	D8 🗌	D9 🗌	D10 🗌	E 🗌	
D.	University of Ca	alifornia (UC	c) Articulation	on:			
	1. Do you re	ecommend	this course	for transfer	to the UC?	Yes: X	No:
	If YES do Education	•	mend this o Curriculum (e Intersegm Yes: X No		eral
	IGETC Ar	English (sh Commur Composition hinking-Eng nmunication	ı glish Compo	sition		
	IGETC Ar	7		-	Quantitative	e Reasonin	<u>g</u>
			atical Conce				
	IGETC Ar	rea 3: Arts a Arts Humaniti	and Humani es	<u>ities</u>			
	IGETC Ar	rea 4: Socia	al and Beha	vioral Scien	<u>ces</u>		
		Anthropo Economi Ethnic St Gender S	udies	rchaeology			
		Geograp	hy				
	L	│ History │ Interdisci	nlinary Soc	rial & Behav	rioral Scienc	200	
	<u> </u>	_	•		Legal Instit		
		_] Psycholo	gy				
		Sociolog	y & Crimino	logy			
	IGETC Ar	ea 5: Phys	ical and Bio	logical Scie	nces (mark	all that app	ly)
	se	equence) Physical			al Science L		ne-
		=	Science Co	ourses			
	se	Physical equence)	Science La	b or Biologio	cal Science	Lab Only (r	non-

Lab activities will be conducted onsite

 X Televideo (Examinations and an orientation will be held onsite)

 Teleconference

Other

2. Need/Justification

Improve general student access.

3. Describe how instructors teaching this course will ensure regular, effective contact with and among students.

Online instructors will provide lesson modules that require activities such as reading course material from a mandatory textbook and participating in discussion forums or chat room topics. Instructors may also meet with students for study sessions and online office hours using an online communication tool. Instructors will provide students with feedback on the content and quality of assignments and discussion posts. Additionally, instructors may engage students using the following communication activities available in the online classroom: contact students via e-mail within the course shell, by campus e-mail, and/or MyVCCCD; use the "announcement" tool to remind students of important assignments and due dates; provide students with an online schedule of class events using the "calendar" tool in the online course shell.

4. Describe how instructors teaching this course will involve students in active learning.

Instructors may involve students in active learning with the following activities: students may view video lessons and/or text-based lessons corresponding to course content and learning objectives; students may complete homework through the online course, and/or using an interactive online homework system provided by a publishing company; students may engage in internet searches and Library online database resources on topics corresponding to course content and learning objectives; students may test their knowledge with interactive online quizzes; students may interact with the instructor and classmates using an online discussion forum to ask questions; students may submit questions to the instructor by email or ask in person in a virtual classroom; instructor may create student groups or group activities using the online course.

5. Explain how instructors teaching this course will provide multiple methods of content representation.

The following represent the methods by which content may be provided for learning: instructional videos; textbook and professional journals; links to online resources that may include videos, quizzes, text explanations and extensions, and primary documents; homework assignments.

6. Describe how instructors teaching this course will evaluate student performance.

Students may take objective and essay exams in an online or on-ground teaching environment. Students may be required to do the following assignments: complete reflective writing assignments focused on application of course content; complete regular online quizzes; complete written assignments related to key course concepts; participate in online discussion forums.

XVI. GENERAL EDUCATION COURSE OUTLINE ADDENDUM

General Education Division of Learning [check all applicable boxes]:
X Natural Sciences
Biological Science
X Physical Science

file:///E/Courses/AST%20M01%204217%20(Outline%20Update,%20Fall%202015).htm[4/23/2019 10:13:55 AM]

Curriculum Chair: Jerry Mansfield 02/14/2015

Executive Vice President: Lori Bennett 02/12/2015

Articulation Officer: Letrisha Mai 02/05/2015

Librarian: Mary LaBarge 02/01/2015

Implementation Term and Year: Fall 2015

Approval Dates:
Approved by Moorpark College Curriculum Committee: 02/10/2015

Approved by Board of Trustees (if applicable): ______

Approved by State (if applicable): _____