ENGR M122: INDEPENDENT STUDY - ENGINEERING

Originator srelle

College Moorpark College

Discipline (CB01A) ENGR - Engineering

Course Number (CB01B) M122

Course Title (CB02) Independent Study - Engineering

Banner/Short Title Ind. Study - Engineering

Credit Type Credit

Start Term Spring 2020

Formerly ENGR M22A/B

Catalog Course Description

Allows independent study for students who wish to extend their knowledge of a particular area of Engineering through research and study. Utilizes an approved independent project. Includes one-on-one work with the instructor. Interested students should contact an Engineering instructor for assistance in developing a contract for learning about a specific topic.

Additional Catalog Notes

May be taken for a maximum of 6 units.

Taxonomy of Programs (TOP) Code (CB03)

0924.00 - *Engineering Technology, General (requires Trigonometry)

Course Credit Status (CB04)

D (Credit - Degree Applicable)

Course Transfer Status (CB05) (select one only)

B (Transferable to CSU only)

Course Basic Skills Status (CB08)

N - The Course is Not a Basic Skills Course

SAM Priority Code (CB09) D - Possibly Occupational

Course Cooperative Work Experience Education Status (CB10) N - Is Not Part of a Cooperative Work Experience Education Program

Course Classification Status (CB11)

Y - Credit Course

Educational Assistance Class Instruction (Approved Special Class) (CB13)

N - The Course is Not an Approved Special Class

Course Prior to Transfer Level (CB21)

Y - Not Applicable

Course Noncredit Category (CB22)

Y - Credit Course

Funding Agency Category (CB23) Y - Not Applicable (Funding Not Used)

Course Program Status (CB24) 2 - Not Program Applicable

General Education Status (CB25) Y - Not Applicable

Support Course Status (CB26) N - Course is not a support course

Field trips Will not be required

Grading method Letter Graded

Alternate grading methods Student Option- Letter/Pass Pass/No Pass Grading

Does this course require an instructional materials fee? No

Repeatable for Credit

No

Is this course part of a family? No

Units and Hours

Carnegie Unit Override No

In-Class

Lecture

Activity

Laboratory

Total in-Class

Total in-Class

Outside-of-Class

Internship/Cooperative Work Experience

Paid

Minimum Paid Internship/Cooperative Work Experience Hours 37.5

Maximum Paid Internship/Cooperative Work Experience Hours 210

Unpaid

Minimum Unpaid Internship/Cooperative Work Experience Hours 30

Maximum Unpaid Internship/Cooperative Work Experience Hours
180

Total Outside-of-Class

Total Outside-of-Class

Total Student Learning

Total Student Learning

Minimum Units (CB07)

.5 Maximum Units (CB06)

3

Prerequisites Completion of one course in Engineering and instructor approval

Entrance Skills

Entrance Skills

Completion of one course in Engineering and instructor approval

Requisite Justification Requisite Type

Prerequisite

Requisite One course in engineering

Requisite Description Course in a sequence

Level of Scrutiny/Justification Other (specify)

Specify Other Level of Scrutiny/Justification

To complete an internship in engineering the student must have completed at least one course in engineering

	Upon satisfactory completion of the course, students will be able to:
1	present the results of their independent study research or project.
Course C	Objectives
	Upon satisfactory completion of the course, students will be able to:
1	apply the knowledge acquired to other aspects of engineering.
2	formulate statements designed to assess the applicability of their knowledge to other related topics.
3	analyze new information, practices, or research in the engineering discipline and utilize those findings in further research or creative projects.

Course Content

Lecture/Course Content Not applicable.

Laboratory or Activity Content

Project content and specific topics will be determined by the student in consultation with the supervising faculty member.

Methods of Evaluation

Which of these methods will students use to demonstrate proficiency in the subject matter of this course? (Check all that apply):

Problem solving exercises Skills demonstrations Written expression

Methods of Evaluation may include, but are not limited to, the following typical classroom assessment techniques/required assignments (check as many as are deemed appropriate):

Individual projects Journals Oral analysis/critiques Oral presentations Projects Participation Portfolios Reports/Papers/Journals Reports/papers Research papers

Instructional Methodology

Specify the methods of instruction that may be employed in this course

Other (specify)

Specify other method of instruction

Meetings with the student to review project/internship progress.

Representative Course Assignments

Writing Assignments

- 1. Development of project-related documents: essays, project reports, library research, and literature reviews.
- 2. Projects to be outlined based upon consultation between the instructor and the student.

Critical Thinking Assignments

1. Projects to be outlined based upon consultation between the instructor and the student.

Reading Assignments

1. Reading assignments will depend upon the nature of the project.

Skills Demonstrations

1. Skills demonstrations will depend upon the nature of the project.

Outside Assignments

Representative Outside Assignments

1. Projects to be determined in a conversation between the instructor and the student.

District General Education

- **A. Natural Sciences**
- **B. Social and Behavioral Sciences**
- **C. Humanities**
- **D. Language and Rationality**
- E. Health and Physical Education/Kinesiology

F. Ethnic Studies/Gender Studies

Course is CSU transferable Yes

CSU Baccalaureate List effective term: FALL 1998

CSU GE-Breadth

Area A: English Language Communication and Critical Thinking

Area B: Scientific Inquiry and Quantitative Reasoning

Area C: Arts and Humanities

Area D: Social Sciences

- Area E: Lifelong Learning and Self-Development
- CSU Graduation Requirement in U.S. History, Constitution and American Ideals:

IGETC

- Area 1: English Communication
- Area 2A: Mathematical Concepts & Quantitative Reasoning
- **Area 3: Arts and Humanities**
- Area 4: Social and Behavioral Sciences
- **Area 5: Physical and Biological Sciences**
- Area 6: Languages Other than English (LOTE)

Textbooks and Lab Manuals

Resource Type Other Resource Type

Description

Specific books, articles, films, etc. used will be determined by the supervising faculty member in consultation with the student..

Library Resources

Assignments requiring library resources Research projects using the Library's print and online resources. Sufficient Library Resources exist Yes

Primary Minimum Qualification ENGINEERING

Review and Approval Dates

Department Chair 11/02/2019

Dean 11/02/2019

Technical Review 11/07/2019

Curriculum Committee 11/19/2019

DTRW-I 12/12/2019

Curriculum Committee MM/DD/YYYY

Board 01/21/2020

CCCCO 01/28/2020

Control Number CCC00061247

DOE/accreditation approval date MM/DD/YYYY