I. CATALOG INFORMATION

A. Discipline: MATHEMATICS
B. Subject Code and Number: MATH M01
C. Course Title: Elementary Algebra
D. Credit Course units:

Units: 5
Lecture Hours per week: 5
Lab Hours per week: 0
Variable Units: No
E. Student Learning Hours:

Lecture Hours:
Classroom hours: 87.5-87.5
Laboratory/Activity Hours:
Laboratory/Activity Hours 0-0
Total Combined Hours in a 17.5 week term: $\underline{87.5-87.5}$
F. Non-Credit Course hours per week \qquad
G. May be taken a total of: X 1 \square $2 \square 3$ \square 4 time(s) for credit
H. Is the course co-designated (same as) another course: No $\quad \mathrm{X}$ Yes \square If YES, designate course Subject Code \& Number: \qquad
I. Course Description:

Reviews briefly arithmetic including integers, fractions, and decimals. Covers algebraic expressions, linear equations and inequalities, graphing lines, systems of linear equations, integer exponents, polynomials, factoring of polynomials, solving quadratic equations by the factoring method, and rational expressions.
J. Entrance Skills
*Prerequisite:
No \square Yes X Course(s)
1 year of high school pre-algebra or equivalent with grade of C or better or MATH M09 or placement as determined by college's multiple measures assessment process.
*Corequisite: \quad No \triangle Yes \square Course(s)

Limitation on Enrollment: No X Yes \square

Recommended Preparation: No \triangle Yes \square Course(s)

Other:
No X Yes

K. Other Catalog Information:

MATH M01 is equivalent to MATH M01A and MATH M01B. Unit credit may be received for either MATH M01 or (MATH M01A and MATH M01B, or MATH 04A), but not both.

II. COURSE OBJECTIVES

Upon successful completion of the course, a student will be able to:

		Methods of evaluation will be consistent with, but not limited by, the following types or examples.
1	simplify and evaluate algebraic expressions.	Graded work and exams.
2	identify a one variable equation as either conditional, a contradiction, or an identity and test numbers to determine if they satisfy the equation.	Graded work and exams.
3	solve first-degree equations in one variable and check the solution for the given equation.	Graded work and exams.
4	solve applied problems involving first-degree equations in one variable.	Graded work and exams.
5	solve first-degree inequalities in one variable.	Graded work and exams.
6	find the x - and y -intercepts of the graph of a linear equation.	Graded work and exams.
7	find the slope of the line passing through two given points and determine the slope of a line given its graph.	Graded work and exams.
8	graph a linear equation.	Graded work and exams.
9	determine the slope and y -intercept of a line given its equation.	Graded work and exams.
10	write an equation for a line given two points or given one point and the slope.	Graded work and exams.
11	solve systems of two linear equations in two variables using each of the following methods: graphing method, addition (elimination) method, and the substitution method.	Graded work and exams.
12	solve application problems by solving a system of two linear equations in two variables.	Graded work and exams.
13	simplify expressions involving integer exponents using the properties and rules of exponents including the definitions of zero	Graded work and exams.

14	and negative exponents. convert a number written in standard notation to scientific notation and vice-versa.	Graded work and exams.
15	determine the degree of a polynomial and simplify, add, subtract, multiply, and divide polynomials.	Graded work and exams.
16	factor a polynomial using the following methods: greatest common factor, factor by grouping, difference of squares, and factor quadratic trinomials.	Graded work and exams.
17	solve quadratic equations by factoring.	Graded work and exams.
18	simplify rational expressions to lowest terms and multiply, divide, add, and subtract rational expressions.	Graded work and exams.

III. COURSE CONTENT

Estimated \%	Topic	Learning Outcomes
Lecture (must total 100\%)		
15.00\%	A. Introduction to Algebra 1. Review of arithmetic with emphasis on integers and fractions 2. Review of the properties of numbers 3. Exponents and order of operations 4. Algebraic expressions 5. Evaluating algebraic expressions 6. Simplifying algebraic expressions 7. Translating phrases and sentences algebraically	1
15.00\%	B. First-Degree Equations and Inequalities 1. Types of equations 2. Basic properties of equalities 3. Solving first-degree equations in one variable 4. Applications of first-degree equations 5. Types of inequalities 6. Basic properties of inequalities 7. Solving first-degree inequalities in one variable 8. Applications of first-degree inequalities in one variable (*optional)	2, 3, 4, 5
15.00\%	C. Graphing Lines 1. The rectangular coordinate system 2. Graphing a linear equation in two variables 3. Intercepts 4. Finding the slope given two points or given the graph of a line 5. Slope-intercept form 6. Point-slope form of an equation of a line 7. Finding an equation of a line given two points or given one point and the slope	$\begin{aligned} & 6,7,8,9 \\ & 10 \end{aligned}$
15.00\%	D. Systems of Linear Equations 1. Solving systems of linear equations in two variables by: a. The graphing method b. The substitution method c. The addition (elimination) method 2. Applications of systems of linear equations	11, 12

	E. Exponents and Polynomials 1. Exponent rules 2. Zero and negative exponents 3. Scientific notation - conversion to and from standard notation 4. Terminology of polynomials and the degree of a polynomial 5. Simplification of polynomials 6. Addition and subtraction of polynomials 7. Multiplication of polynomials 8. Division of polynomials	$13,14,15$
	F. Factoring 1. Factoring out the greatest common factor 2. Factoring a polynomial with four terms by grouping 3. Factoring trinomials 4. Factoring a difference of two squares 5. Solving quadratic equations by the factoring method	
15.00%	G. Rational Expressions 1. Reducing rational expressions 2. Multiplication and division of rational expressions 3. Addition and subtraction of rational expressions 4. Solving equations with rational expressions (*optional*)	16,17
10.00%	*Optional topics should be covered if time allow, but may be omitted without loss of continuity in the mathematics program.	
	Enrichment topics related to the study of MATH M01 may also be presented by the instructor, if time allows.	18

IV. TYPICAL ASSIGNMENTS

A. Writing assignments

Writing assignments are required. Possible assignments may include, but are not limited to:
homework problems selected from the elementary algebra textbook where answers require a written explanation of the solution, such as solving an applied first-degree equation in one variable.
graded assignments: in-class and/or homework assignments requiring complete solutions using both written English and symbolic mathematical language, such as solving application problems by solving a system of linear equations in two variables including units where appropriate.
short answer problems on exams such as stating the results for an application problem, which may include describing the answer to a motion problem including the appropriate units.
B. Appropriate outside assignments

Appropriate outside assignments are required. Possible assignments may include, but are not limited to:
assigned reading material and homework problems from the elementary algebra textbook, such as solving quadratic equations by factoring.

3	graded problem solving assignments, such as writing an equation for a line given two points or given one point and the slope.
4	group or individual projects, such as finding the x - and y-intercepts of the graph of a linear equation.

C. Critical thinking assignments

Critical thinking assignments are required. Possible assignments may include, but are not limited to:
apply analytic techniques for solving a mathematical and/or application problem, such as finding a solution to a linear equation.
compare and contrast methods of solution to mathematical problems, such as finding a solution to a system of two linear equations in two variables.
describe and apply the algorithmic steps for obtaining the solution to a mathematical problem, such as solving a quadratic equation by factoring.

V. METHODS OF INSTRUCTION

Methods of instruction may include, but are not limited to:
X Distance Education - When any portion of class contact hours is replaced by distance education delivery mode (Complete DE Addendum, Section XV)

X Lecture/Discussion
\square Laboratory/Activity
X Other (Specify)
Introductory lectures to new concepts; review material from previous topics as related to the current topic; provide detailed step-by-step examples; provide practice problems to develop proper mathematical skills and techniques; provide student interaction for questions and answers; use projects and/or group work to enhance student understanding of the concepts; and discuss application problems. Two course specific examples for these types of instruction are: (1) convert a number written in standard notation to scientific notation and vice-versa, (2) determine the degree of a polynomial and simplify, add, subtract, multiply, and divide polynomials.

VI. METHODS OF EVALUATION

Methods of evaluation may include, but are not limited to:

\square	Essay Exam	\boxed{X}	Classroom Discussion	\square	Skill Demonstration
X	Problem Solving	\square	Reports/Papers/ Journals	X	Participation
X	Exam	X	Projects	X	Other (specify)

Quizzes and/or graded work will be used to evaluate students for the critical thinking skills needed to solve math problems.

Problems must require students to demonstrate analytic skills and the step-bystep details required for the solution.

VII. REPRESENTATIVE TEXTS AND OTHER COURSE MATERIALS

Martin-Gay, Elayn. Beginning Algebra. 7th ed. Pearson, 2016.
Kaufmann, Jerome E., and Karen L. Schwitters. Elementary Algebra. 10th ed. Brooks Cole, 2014.

Blitzer, Robert F. Introductory Algebra for College Students. 7th ed. Pearson, 2016.

VIII. STUDENT MATERIALS FEES

IX. PARALLEL COURSES

College	Course Number	Course Title	Units
CSU Channel Islands	MATH 94	Introduction to Algebra	4
Ventura College	MATH V01	Elementary Algebra	5
Oxnard College	MATH R011	Elementary Algebra	5
LA Pierce College	MATH 115	Elementary Algebra	5

X. MINIMUM QUALIFICATIONS

Courses Requiring a Masters Degree:

Master's in mathematics or applied mathematics OR Bachelor's in either of the above AND Master's in statistics, physics, or mathematics education OR the equivalent.
XI. ARTICULATION INFORMATION
A. Title V Course Classification:

1. This course is designed to be taken either:

Pass/No Pass only (no letter grade possible); or Letter grade (P/NP possible at student option)
2. Degree status:

Either \square Associate Degree Applicable; or X Non-associate Degree Applicable
B. Moorpark College General Education:

1. Do you recommend this course for inclusion on the Associate Degree General Education list?
Yes: \square No: X If YES, what section(s)?
\square A1 - Natural Sciences - Biological Science
\square A2 - Natural Sciences - Physical Science
\square B1 - Social and Behavioral Sciences - American History/Institutions
\square B2 - Social and Behavioral Sciences - Other Social Behavioral Science
\square C1 - Humanities - Fine or Performing Arts
\square C2 - Humanities - Other Humanities
\square D1 - Language and Rationality - English Composition
\square D2 - Language and Rationality - Communication and Analytical
Thinking
\square E1 - Health/Physical Education
\square E2 - PE or Dance
\square F - Ethnic/Gender Studies
C. California State University(CSU) Articulation:
2. Do you recommend this course for transfer credit to CSU? Yes: \square No: X
3. If YES do you recommend this course for inclusion on the CSU General Education list?
Yes: \square No: X If YES, which area(s)?
A1 \square
A2 \square
A3 \square
B1

B2 \square B3 \square B4 \square
C1 \qquad
D6 \square C2 \square
D1

D2

D3 \square D4 \qquad D5
D7 \square
D8

D9 D10 \square
E \square
D. University of California (UC) Articulation:
4. Do you recommend this course for transfer to the UC

Yes: \square No: X
2. If YES do you recommend this course for the Intersegmental General Education Transfer Curriculum (IGETC)? Yes: \square No: X

IGETC Area 1: English Communication

English Composition
Critical Thinking-English Composition
Oral Communication
IGETC Area 2: Mathematical Concepts and Quantitative Reasoning
Mathematical Concepts
IGETC Area 3: Arts and Humanities

Arts
Humanities
IGETC Area 4: Social and Behavioral Sciences

\square	Anthropology and Archaeology
\square	Economics
\square	Ethnic Studies
\square	Gender Studies
\square	Geography
\square	History
\square Interdisciplinary, Social \& Behavioral Sciences	
\square Political Science, Government \& Legal Institutions	
\square Psychology	
\square Sociology \& Criminology	

IGETC Area 5: Physical and Biological Sciences (mark all that apply)
Physical Science Lab or Physical Science Lab only (nonesequence)
\square Physical Science Lecture only (non-sequence)
Biological Science
\square Physical Science Courses
\square Physical Science Lab or Biological Science Lab Only (nonsequence)
\square Biological Science Courses
Biological Science Lab course
First Science course in a Special sequence
Second Science course in a Special Sequence
Laboratory Activity
Physical Sciences

IGETC Area 6: Language other than English

\square Languages other than English (UC Requirement Only)
\square U.S. History, Constitution, and American Ideals (CSU
Requirement ONLY)
\square U.S. History, Constitution, and American Ideals (CSU Requirement ONLY)

XII. REVIEW OF LIBRARY RESOURCES

A. What planned assignment(s) will require library resources and use?

The following assignments require library resources:
Use of textbooks on reserve. Outside assignments may involve: (1) checking out a different textbook to get additional examples of application problems which can be solved using linear equations; (2) checking out a technical writing resource manual to find the acceptable style for the explication of a practical result.
B. Are the currently held library resources sufficient to support the course assignment?
YES: X NO: \square

If NO, please list additional library resources needed to support this course.

XIII. PREREQUISITE ANDIOR COREQUISITE JUSTIFICATION

Requisite Justification for 1 year of high school pre-algebra or equivalent with grade of C or better

X A. Sequential course within a discipline.

B. Standard Prerequisite or Corequisite required by universities.

C. Corequisite is linked to companion lecture course.

D. Prerequisite or Corequisite is authorized by legal statute or regulation. Code Section: \qquadE. Prerequisite or Corequisite is necessary to protect the students' health and safety.

F. Computation or communication skill is needed.G. Performance courses: Audition, portfolio, tryouts, etc. needed.
or

Requisite Justification for MATH M09
X A. Sequential course within a discipline.

1. Write whole numbers in expanded form, the word name for a number, and the number for a word name.
2. Factor whole numbers into primes and apply the rules of divisibility.
3. Add, subtract, multiply, and divide whole numbers, including multidigit numbers when carrying and borrowing may be necessary, using the properties of numbers.
4. Perform several arithmetic operations in the proper order and evaluate whole number exponents.
5. Round whole numbers and estimate the answer to a problem involving calculations with whole numbers. Solve application problems using the basic math operations and check answers.
6. Add, subtract, multiply, or divide two or three signed numbers with the same or different signs. Calculate with signed numbers using more than one operation.
7. Use fractions to represent data from applied situations.
8. Write a number as a product of prime numbers, reduce fractions, and determine if two fractions are equivalent.
9. Change between a mixed number and an improper fraction and reduce. Multiply and divide mixed numbers and fractions that are proper or improper.
10. Find the least common denominator given two or three fractions and convert a fraction to an equivalent fraction with a given denominator. Add and subtract mixed numbers and fractions with or without a common denominator. Solve applied problems that involve various types of fractions.
11. Change between fractional and decimal notation. Compare decimals, order decimals, and round decimals to a specified decimal place. Add, subtract, multiply, and divide decimals. Solve applied problems using operations with decimals.
12. Use ratios and rates to compare quantities.
13. Write a proportion and solve proportions for the missing number. Solve applied problems using proportions.
14. Change a percent, decimal, or a fraction to equivalent forms. Translate a percentage problem into a proportion or an equation and solve. Solve applied percentage problems including interest, commission, percent change, and discounts.
15. Identify units of measure in the American system and solve related problems.
16. Use prefixes in the metric system and convert metric units of length, mass, and volume. Solve applied problems involving the metric system of measure.
17. Change numbers between standard notation and scientific notation. Add and subtract numbers in scientific notation.
18. Combine like terms containing a variable and apply the distributive property.
19. Solve equations using the addition or multiplication properties of equality or both. Solve equations where the variable is on both sides of the equal sign and the distributive property must be used.

B. Standard Prerequisite or Corequisite required by universities.
C. Corequisite is linked to companion lecture course.
D. Prerequisite or Corequisite is authorized by legal statute or regulation. Code Section: \qquad
\square E. Prerequisite or Corequisite is necessary to protect the students' health and safety.

F. Computation or communication skill is needed.G. Performance courses: Audition, portfolio, tryouts, etc. needed.
or

Requisite Justification for placement as determined by college's multiple measures assessment process.A. Sequential course within a discipline.B. Standard Prerequisite or Corequisite required by universities.C. Corequisite is linked to companion lecture course.

D. Prerequisite or Corequisite is authorized by legal statute or regulation. Code Section: \qquadE. Prerequisite or Corequisite is necessary to protect the students' health and safety.
X F. Computation or communication skill is needed.
\square G. Performance courses: Audition, portfolio, tryouts, etc. needed.

XIV. WORKPLACE PREPARATION

MATH M01: Not Applicable

XV. DISTANCE LEARNING COURSE OUTLINE ADDENDUM

1. Mode of Delivery
\square Online (course will be delivered 100\% online)
X Online with onsite examinations (100\% of the instruction will occur online, but examinations and an orientation will be scheduled onsite)

X Online/Hybrid (a percentage of instruction will be held online and the remaining percentage of instruction will be held onsite)
\square Lab activities will be conducted onsite
\square Televideo (Examinations and an orientation will be held onsite)Teleconference
2. Need/Justification

Improve General Student Access using Internet-based mathematics applications.
3. Describe how instructors teaching this course will ensure regular, effective contact with and among students.

Using the Course Management System (CMS) adopted by VCCCD, instructors may engage students using the following communication activities:

Provide students with an opportunity to ask questions of fellow students and the instructor using the "discussion forum" tool provided by the CMS.

Contact students via email within the CMS, by campus email, and/or MyVCCCD.

Meet with students for study sessions and online office hours using an online communication tool like CCCConfer utilizing Blackboard, where instructors and students may speak with one another using VoIP or phone, and instructors may write the problems for all to see using an online whiteboard. These sessions may be archived so that students who were not able to attend may watch the session at a later time.
Provide students with an online schedule of class events using the "calendar" tool in the online CMS.

Use the "announcement" tool to remind students of important assignments and due dates.
4. Describe how instructors teaching this course will involve students in active learning.

Instructors may involve students in active learning in the following activities:
Students may view video lessons and/or text-based lessons for each learning objective (created by an instructor or by a publishing company).
Students may complete homework on paper and/or using an interactive online homework system provided by a publishing company.

Students may test their knowledge with interactive online quizzes provided by a publishing company.

Students may interact with the instructor and classmates using an online discussion forum to ask questions.
Students may attend online study sessions using a communication tool through CCCConfer.

Students may submit questions to the instructor by email.
Instructor may create student groups or group activities using the CMS.
5. Explain how instructors teaching this course will provide multiple methods of content representation.

The following represent the methods by which content may be provided for learning:

Live tutorials using a communication tool like CCCConfer.
Instructional Videos
Textbook
Links to online resources that may include video, quizzes, interactive math games, text explanations, and more.
6. Describe how instructors teaching this course will evaluate student performance.

Students will take problem solving exams in a proctored on-ground environment. Students may be required to do the following assignments:

Complete practice problems on paper and/or in an online interactive homework system

Complete regular online quizzes
Participate in online discussion forums.

XVI. GENERAL EDUCATION COURSE OUTLINE ADDENDUM

MATH M01: Not Applicable

XVII. STUDENT MATERIALS FEE ADDENDUM

MATH M01: Not Applicable

XVIII. REPEATABILITY JUSTIFICATION TITLE 5, SECTION 55041

MATH M01: Not Applicable

XIX. CURRICULUM APPROVAL

Course Information:
Discipline: MATHEMATICS
Discipline Code and Number: MATH M01
Course Revision Category: Outline Update
Course Proposed By:
Originating Faculty Christopher Copeland 10/12/2017
Faculty Peer: Katrina Topolinski 10/16/2017
Curriculum Rep: Daniel Rubinstein 10/18/2017
Department Chair: Phillip Abramoff 10/16/2017
Division Dean: Mary Rees 10/16/2017

Approved By:

Curriculum Chair: Jerry Mansfield 04/23/2018
Executive Vice President: \qquad
Articulation Officer: Jodi Dickey 04/03/2018
Librarian: Mary LaBarge 04/03/2018
Implementation Term and Year: Fall 2018
Approval Dates:
Approved by Moorpark College Curriculum Committee: $\underline{04 / 17 / 2018}$
Approved by Board of Trustees (if applicable): 06/12/2018
Approved by State (if applicable): $\underline{06 / 22 / 2018}$

