Name:	Section:						
Data and Calculations							
	Trial 1		Trial 2		Trial 3		
Mass dry calorimeter		=		_ =			
Mass calorimeter + volume H ₂ O				-			
Initial temperature of water in calorimeter							
Mass of metal		=		_ =			
Initial temperature of hot metal (before adding it to calorimeter)							
Final temperature of water + metal in calorimeter							
Δt_{water}							
$\Delta t_{ m metal}$							

1. Calculate the specific heat of the metal from each trial and find the average value. If the two values do not agree to within 0.06 J/g °C, a third trial must be run. SHOW CALCULATIONS:

Trial 1	Trial 2	Trial 3

Average Specific Heat _____ J/g $^{o}\mathrm{C}$

2. Find the actual value for the specific heat of your metal in a reference book. Give this value in J/g °C or J/g K. Calculate the % error of your average value.

Post-lab Questions

- 1. Do objects that have the same temperature have the same amount of heat? Briefly explain.
- 2. What is the difference between something which is hot and something which has a lot of heat?
- 3. How much heat would it take to raise the temperature of 645 g of water by 25°C? SHOW CALCULATIONS.
- 4. When a 15.411 gram sample of metal gains 128.0 J of heat, its temperature changes from 18.55 °C to 83.00 °C. What is the specific heat of the metal? SHOW CALCULATIONS.

- 5. A metal sample weighing 71.9 g and at a temperature of 100.0 °C was placed in 41.0 g of water in a calorimeter at 24.5 °C. At equilibrium, the temperature of the water and metal was found to be 35.0 °C.
 - A. What was Δt_{water} ?
 - B. What was Δt_{metal} ?
 - C. How much heat flowed into the water?
 - D. Calculate the specific heat of the metal.