Name:	Section:	

Workshop 1 – Math Review

Algebra is an essential skill in solving scientific problems. The following problems review the type of math you will need to use in this course.

- 1. Given the following equation: $y = 3x^2 + 7$
 - a) Show your work using algebra (symbols only) to solve for x:

b) If y = 100, solve for x by entering into your re-arranged equation:

Write your numerical answer from the calculator:

2. a) Given the equation: $M_1V_1 = M_2V_2$, solve for M_2 (hint: rearrange the symbols)

b) If $M_1 = 0.100$, $V_1 = 5$, and $V_2 = 250$, then what is the numerical value of M_2 ?

 $M_2 = \underline{\hspace{1cm}}$

Name:

Section:

3. For the equation $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$, use algebra to solve for T_2 :

Ask yourself: Did you actually solve for T_2 or is your answer in terms of T_2^{-1} ?

<u>Check your math</u>: If $V_1 = 950,000$, $V_2 = 115,600$, $P_1 = 0.980$, $T_1 = 298$, $P_2 = 0.905$, what does $T_2 = ?$

 $T_2 = \underline{\hspace{1cm}}$

4. Use Power Rules to solve for the following (without a calculator!):

a)
$$\frac{10^8}{10^2} =$$

(a) _____

b)
$$(10^4)(10^3) =$$

(b) _____

c)
$$(10^1)(10^{-2}) =$$

(c) _____

- 5. a) Write 10^{-7} as a fraction.
 - b) Write 10^{-2} as a decimal.
- 6. Average the following numbers:
 - 3.75
- 4.23
- 4.95
- 4.41

3.80

4.72

Workshop 2 – Scientific Notation and Scientific Calculators

1. Write each of the following numbers in proper scientific notation:

2. For each of these problems, complete the answer with a 10 raised to the proper power. Note that each answer is expressed to the correct number of significant figures.

(a)
$$(1.73 \times 10^3)(2.0 \times 10^3) =$$

(b)
$$\frac{6.477 \times 10^5}{3.62 \times 10^3} =$$

(c)
$$(5.7 \times 10^3)(2.6 \times 10^5) =$$

(d)
$$\frac{2.75 \times 10^{-6}}{2.3 \times 10^3} =$$

(e)
$$\frac{5.80 \times 10^4}{9.53 \times 10^7} =$$

3. Solve each of the following problems, expressing each answer to the proper number of significant figures. Use scientific notation.

(a)
$$(7.55 \times 10^2)(2.83 \times 10^8) =$$

(b)
$$\frac{(6.51 \times 10^{-2})(7.07 \times 10^{-5})}{2.92 \times 10^{3}} =$$

Na	ime: Section:
Sc	ientific Calculator
4.	Write down the Brand and series number of your Scientific Calculator. Example: Texas Instruments TI-30XIIS
	Find at least one other student with the same brand and version of calculator (you may consider working with them for the remainder of this assignment).
5.	Enter Avogadro's Number (6.022×10^{23}) into your calculator. Write down the sequence of buttons you used to enter a number in scientific notation on your calculator:
5.	The diameter of a penny is 0.01905 meters. Convert this number into scientific notation and then enter into your calculator. Write below what button(s) would allow you to convert the number back to "standard" notation on your calculator.
7.	Use this number for all the questions in this problem: 10^{-3}
	Write it as a fraction
	Write it as a decimal
	Enter into your scientific calculator. Which button(s) did you use to input?

Workshop 3 – Significant Figures

Show calculation setups and answers for all problems below.

1. Using the ruler shown on the page, what is the length of the dark rectangle to the correct number of significant figures?

__ cm

2. How

cant figures

signifi

are in each of the following numbers?

- (a) 8.57 _____ (b) 9.3 ____ (c) 6.20 ____ (d) 74,000 ____

- (e) 0.058 _____ (f) 0.0085 ____ (g) 0.0790 ____ (h) 0.4020 ____
- 3. How many significant figures should be in the answer to each of the following calculations? (You may need to solve the math to answer the question, but your final answer is the number of significant figures, NOT the numerical answer to the problem.)
 - (a) 16.20 +0.87

(a) _____

(b) 46.837 -9.5

(b)

(c) 23.3×1.73

(c) _____

(d) 3.1×6.4215

(d) _____

(e) $\frac{0.4273}{0.1853}$

(e) _____

(f) $\frac{4.73 \times 8.31 \times 337}{834 \times 357}$

(f) _____

Na	nme: Section:	
	Workshop 4 – Dimensional Analysis	
	ow your calculation setup for the following problems. Make certa propriate units and round-off your answers to the proper number of signi	
1.	Convert 25 °F to degrees Celsius.	
2.	Convert –75 °C to degrees Fahrenheit.	
3.	A ruler is 48.0 in. long. How long is this in centimeters?	
4.	A bowling ball weights 15.3 lbs. Calculate its mass in grams.	
5.	125 mL of water are contained in a beaker. Convert this to quarts.	
6.	A baseball bat is 95.9 cm long. How long is this in: (a) Millimeters?	
	(b) Feet?	
_		

7. An object has a mass of 35.8 g and a volume of $40.5~\rm cm^3$. Calculate the density of the object in g/mL.

Na	me:	Section:	
8.		5.4 g is immersed into a graduated cylinded then rises to 48.8 mL. Calculate the dens	
9.	If the density of the liquid in the graduated cylinder.	Problem 8 is 0.785 g/mL, calculate the m	ass of the liquid in
10	. A flask contains 365 mL of v (a) The mass of the water in	vater. The density of water is 1.00 g/mL. ograms.	Calculate:
	(b) The volume of the water	in liters.	
11	. The density of CCl ₄ is 1.57 g.	/mL. Calculate the volume of 135 g of CC	Cl4.
12		f a rectangular block of wood if it measure and has a mass of 0.0620 kg? Will the bl	
		<u>Circ</u>	le one: sink or float

Name:	Section:

Workshop 5 – Nomenclature

Hint: The names and formulas of a variety of polyatomic ions (including ones that your instructor many not have previously given) can be found in the appendix of this lab manual.

A. Provide a chemical name for the following formulas:

1. NaBr		
I. Nabi		

7.
$$SO_3$$

Name:	Section:
B. Provide a formula for the following nam	es:
1. Sodium fluoride	
2. Calcium iodide	
3. Sodium phosphate	
4. Barium phosphate	
5. Chromium(III) nitrate	
6. Gold(I) carbonate	
7. Potassium hydrogen carbonate	
8. Nickel(I) bicarbonate	
9. Cobalt(II) acetate	
10. Ammonium hydrogen sulfate	
11. Calcium oxide	
12. Barium hydroxide	
13. Copper(II) chloride	

Nan	ne:	Section:
C. 1	Harder Set! Provi	de a chemical name for the following formulas:
-	1. Na ₂ S	
2	2. Ca(C ₂ H ₃ O ₂) ₂	
3	3. Fe(NO ₂) ₂	
2	4. MgSO ₃	
4	5. NaHSO ₃	
(6. Na ₂ CrO ₄	
<u> </u>	7. Na ₂ Cr ₂ O ₇	
8	8. CCl ₄	
Ģ	9. KClO ₃	
	10. Ca(ClO) ₂	
	11. HNO ₃	
	12. HBr _(aq)	
	12. HBr _(aq)	

Name:	Section:
D. Harder! Provide a formula for the follow	ving names:
1. Sodium permanganate	
2. Beryllium chromate	
3. Sodium sulfite	
4. Calcium hydrogen phosphate	
5. Chromium(III) chlorate	
6. Sodium perchlorate	
7. Sulfur pentachloride	
8. Chlorine trioxide	
9. Cobalt(III) cyanide	
10. Potassium permanganate	
11. Potassium carbonate	
12. Hydrochloric acid	
13. Phosphoric acid	

Na	ıme:		Section:
E.	Sti	ll harder set! Pro	ovide a chemical name for the following formulas:
	1.	HClO _{4(aq)}	
	2.	Na ₂ O ₂	
	3.	HI _(aq)	
	4.	$HC_2H_3O_{2(aq)}$	
	5.	NaH	
	6.	TiCl ₄	
	7.	$Cu(MnO_4)_2$	
	8.	NH ₄ HSO ₃	
	9.	MgSO ₄ ·5H ₂ O	
	10	. Ca(ClO ₃) ₂	
		. H ₂ Cr ₂ O _{7(aq)}	
		. H ₂ CO _{3(aq)}	
	12	. 112003(aq)	

13. CO₂

Name:	Section:			
F. Still harder! Provide a formula for the for	following names:			
1. Hydrogen peroxide				
2. Arsenic trichloride				
3. Potassium chromate				
4. Chromic acid				
5. Potassium hypochlorite dihydrate				
6. Carbon disulfide				
7. Ammonia				
8. Iron(III) dichromate				
9. Chloric acid				
10. Copper(II) permanganate				
11. Sodium hydrogen phosphate				
12. Magnesium sulfide				
13. Methane				

Workshop 6 – Writing and Balancing Equations

Balance the following reactions. If given words, write the formulas and balance reactions in the space below the words. Remember which elements are diatomic. Include phases.

- 1. Al(s) + $O_2(g) \rightarrow Al_2O_3(s)$
- 2. $Fe(ClO_3)_3(s) \rightarrow FeCl_3(s) + O_2(g)$
- 3. $Ag(s) + HI(aq) \rightarrow AgI(s) + H_2(g)$
- 4. $H_2O(1) + N_2O_5(g) \rightarrow HNO_3(aq)$
- $5. \quad NH_3(g) \ + \quad O_2(g) \ \rightarrow \quad NO_2(g) \ + \quad H_2O(l)$
- 6. $C_3H_8(1) + O_2(g) \rightarrow CO_2(g) + H_2O(1)$
- 7. Aqueous sodium hydroxide and sulfuric acid react to form aqueous sodium sulfate and liquid water
- 8. Methane gas (CH₄) and oxygen gas react to form carbon dioxide gas and water.
- 9. Solid calcium oxide and water create aqueous calcium hydroxide.
- 10. Solid sodium bicarbonate decomposes when heated to form solid sodium carbonate, carbon dioxide gas and liquid water.
- 11. Aqueous potassium sulfide and lead(II) nitrate react to produce solid lead(II) sulfide and aqueous potassium nitrate.
- 12. Aqueous acetic acid and potassium sulfite react to form aqueous potassium acetate, water and sulfur dioxide gas.

Predict products and Balance the following reactions. If no reaction takes place, write NR for no reaction. Include phases.

- 13. Combustion reactions: nonmetals + $O_2 \rightarrow$ nonmetal oxides (CO_2 , H_2O)
 - a) $C_7H_{16}(s) + O_2(g) \rightarrow$
 - b) $C_6H_6(1) + O_2(g) \rightarrow$
 - c) $C_4H_{10}O(1) + O_2(g) \rightarrow$
 - d) $C_7H_6O_2(s) + O_2(g) \rightarrow$
- 14. Double displacement reactions: $AB + CD \rightarrow AD + CB$
 - a) AlCl₃(aq) + Pb(NO₃)₂(aq) \rightarrow
 - b) $HC_2H_3O_2(aq) + Ba(OH)_2(aq) \rightarrow$
 - c) $K_2CrO_4(aq) + SnF_4(aq) \rightarrow$
 - d) $Ca(HCO_3)_2(aq) + HBr(aq) \rightarrow$
- 15. Mixed reactions: Classify, Predict products, and Balance. Write the formulas and balance reactions in the space below the words. Identify all types of reactions for each in the margin.
 - a) $HCl(aq) + Sr(OH)_2(aq) \rightarrow$
 - b) $AlCl_3(aq) + NaNO_3(aq) \rightarrow$
 - c) $C_2H_4(g) + O_2(g) \rightarrow$
 - $d)\ \ HNO_3(aq)\ + \quad Li_2SO_3(aq)\ \rightarrow$
- 16. Word reactions: Write formulas and balance the reactions.
 - a) Crude gunpowders often contain a mixture of potassium nitrate (KNO₃) and charcoal (solid carbon). When heated until a reaction occurs, a solid residue of potassium carbonate (K₂CO₃) is produced. The explosive force of the gunpowder comes from the fact that two gases are also produced, carbon monoxide and nitrogen, which increase in volume with great force and speed.
 - b) A method of preparing pure iron involves heating iron(III) oxide and carbon monoxide together; they react to produce solid iron and carbon dioxide gas.
 - c) The following reaction takes place in termites as they digest wood. Solid glucose, $C_6H_{12}O_6$, and liquid water react to produce aqueous acetic acid ($HC_2H_3O_2$), carbon dioxide, and hydrogen gas. Write a balanced chemical equation for the reaction including phases. (There are several correct answers possible, try to come up with more than one.)

Workshop 7 – Graphical Representation of Data

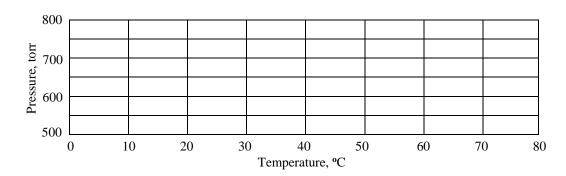
Answer the following questions by plotting and interpreting the data respectively.

Vapor Pressure-Temperature Curves 1300 diethyl ether 1200 ethyl chloride -1100 ethanol 1000 Vapor Pressure (torr) 900 800 700 600 500 water 400 300 200 100 30 40 50 60 70 80 90 100 110 Temperature (°C)

A. Reading a Graph

From the figure at the left, read values for the following:

- 1. The vapor pressure of water at $70 \, {}^{\circ}\text{C}$.
- 2. The temperature at which diethyl ether has a vapor pressure of 600 torr.
- 3. The temperature at which ethyl chloride has the same pressure ethanol has at 80 °C.

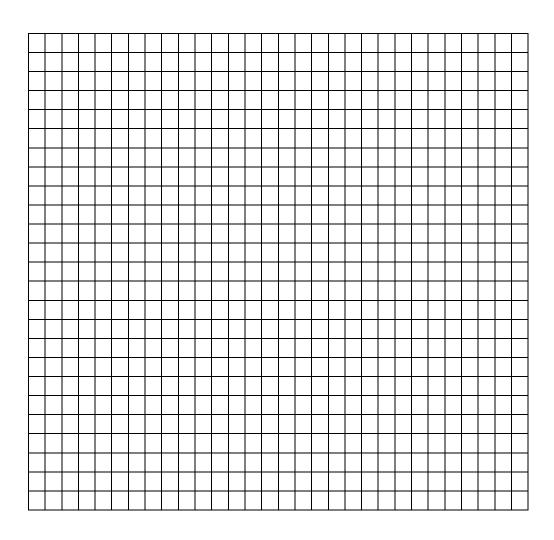

80

B. Plotting Graphs

1. Plot the following pressure-temperature data for a gas on the graph. Draw the best possible straight line through the data.

Temperature, °C: 0 20 40 60

Pressure, torr: 550 605 665 720 775


2. Solve for the slope of the graph above. Slope is defined as rise/run ($\Delta y/\Delta x$).

Slope = _____ (include units)

3. (a) Study the data given below; (b) determine suitable scales for pressure and for volume and mark these scales on the graph; (c) plot the eight points on the graph; and (d) draw the best possible CURVE through these points.

Pressure-Volume data for a gas

Volume, mL	107	76.4	55.7	45.6	35.2	29.7	24.3	20.1
Pressure, torr	25	35	48	60	76	90	110	133

Pressure, torr

Volume (mL)

Read from your graph:

- (a) The pressure at 100 mL
- (b) The volume at 70 torr

Na	me: Section:	
	Workshop 8 – Quantum Mechanics	
Sh	ow calculation setups and answers for all problems below.	
1.	An FM radio station has a frequency of 88.9 MHz (1 MHz = 10^6 Hz). Determine the wavelength (in nm).	ıe
2.	Violet light has a wavelength of about 410 nm. What is its frequency (in Hz)?	
3.	An advertising sign gives off red light and green light. A. Which light has the higher energy? Briefly explain below.	
	B. One of the colors has a wavelength of 680 nm, and the other has a wavelength of 500 nm. Identify which color has which wavelength. Explain your identifications below.	
	Red =	
	Green =	
	C. Which light has the higher frequency? Briefly explain below.	

4. Write the symbols for three cations and three anions *isoelectronic* with neon:

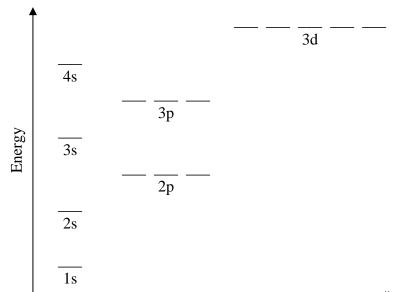
- 5. Write complete and abbreviated electron configurations for each of the following atoms/ions:
 - A. S

Complete:

Abbreviated:

B. Nb

Complete: _____


Abbreviated:

 $C. Sb^+$

Complete:

Abbreviated:

- 6. Arrange the following forms of electromagnetic radiation in order of increasing energy:
 - A. gamma rays from a supernova
 - B. infrared rays from a hot plate
 - C. ultraviolet light from the sun
 - D. radiowaves from an MP3 player
 - E. green light from chlorophyll
- 7. Complete the orbital energy diagram below for Co. How many unpaired electrons does the Co atom have?

unpaired electrons _____

Na	ame: Section:
	Workshop 9 – Mole Conversions
	now calculation setups and answers for all problems below. Use scientific notation for very rge or very small numbers.
1.	Find the molar mass of (a) carbonic acid, H_2CO_3 ; (b) aluminum sulfate, $Al_2(SO_4)_3$; and (c) ammonium dichromate, $(NH_4)_2Cr_2O_7$.
	(a)
	(b)
	(c)
2.	A sample of nickel(II) phosphate, Ni ₃ (PO ₄) ₂ , weighs 114 g. How many moles are in this sample?
3.	What is the mass (in kg) of 35.6 moles of methane gas, CH ₄ ?
4.	Calculate the molecules of copper(II) nitrite, Cu(NO ₂) ₂ , in 0.92 mol Cu(NO ₂) ₂ .
5.	How many molecules of water, H ₂ O, are present in 28.4 g of H ₂ O?

Na	ame:	Section:
6.	Find the weight (in mg) of one atom of gold, Au.	
7.	Determine the weight (in g) of nitrogen atoms in 6.2 tetroxide, N_2O_4 .	14 x 10 ³⁰ molecules of dinitrogen
8.	Calculate the percent composition by mass of alumi	inum hydroxide, Al(OH)3.
	Al _	
	0_	
	Н	
9.	Caffeine, a compound found in coffee, tea, and cola 5.19% H, 28.86% N, and 16.48% O by mass. Its explanation of the compound o	perimentally determined molar mass is
	Empirical _	
10	. How many mL of liquid mercury (Hg) with a density have 1.56×10^{-3} mol?	

Name:	Section:

Workshop 10 – Stoichiometry I

Show calculation setups and answers for all problems below.

- 1. Ammonia gas will react with oxygen gas to yield nitrogen monoxide gas and water vapor.
 - (a) Write the balanced chemical equation for this reaction.
 - (b) How many moles of ammonia will react with 6.73 g of oxygen?

(c) If 6.42 g of water is produced, how many grams of oxygen gas reacted?

(d) If the reaction uses up 9.43 x 10⁵ g of ammonia, how many kilograms of nitrogen monoxide will be formed?

(e) When 2.51 g of ammonia react with 3.76 g of oxygen, 2.27 g of water vapor are produced. What is the percentage yield of water?

Section:		

2. Use the balanced equation below to solve the following problems:

$$2~KMnO_4~+~16~HCl~\rightarrow~5~Cl_2~+~2~KCl~+~2~MnCl_2~+~8~H_2O$$

(a) How many moles of HCl are required to react with 28 g of KMnO₄?

(b) How many Cl₂ molecules will be produced using 1.5 mol KMnO₄?

(c) To produce 29.0 g of MnCl₂, what mass (in g) of HCl will need to react?

(d) How many moles of water will be produced when 5.0 mol of KMnO₄ are consumed?

(e) What is the maximum mass of Cl_2 that can be produced by reacting 65.9 g of KMnO₄ with 18.0 g of HCl?

Na	me: Section:
	Workshop 11 – Gas Laws
Sh	ow calculation setups and answers for all problems below.
1.	You have a sample of 2.0 L of oxygen gas at 3.0 atm pressure. If you reduce the pressure to 0.50 atm, what is the volume of the gas?
2.	A sample of argon gas occupies 2.50 L at 25.0 °C. If the gas is heated at constant pressure, what will the volume be at 99.9 °C?
3.	A 252 mL sample of nitrogen gas is at 715 torr and 25.0 $^{\circ}$ C. What volume would the sample occupy at 760. torr and 0 $^{\circ}$ C?
4.	How many moles of methane (CH ₄) are present in a 10.0 L sample at STP?
5.	How many liters would 14.0 grams of chlorine gas occupy at 300.0 K and 1.51 atm?

Name: Section:	Name:		Section:	
----------------	-------	--	----------	--

6. How many grams of CH₄ at STP would fill a 1.00 L flask?

7. A gas has a pressure of 1.07 atm, a volume of 13.7 L, and a mass of 28.0 g at a temperature of 294 K. What is the molar mass of this gas?

8. A sample of O₂ gas is stored at 30.0 °C and 755 torr. If the volume was 125 mL, how much did the oxygen weigh?

9. Small quantities of hydrogen gas can be prepared in the laboratory by the addition of aqueous hydrochloric acid to metallic zinc according to the following balanced equation:

$$Zn(s) \ + \ 2HCl(aq) \ \rightarrow \ ZnCl_2(aq) \ + \ H_2(g)$$

Suppose 240. mL of hydrogen gas is collected at $40.0\,^{\circ}\text{C}$ and has a pressure of 1.030 atm by this process. How many grams of zinc must have reacted to produce this quantity of hydrogen?

Name:	ie:	Section:
Name.	IC.	Secu

Workshop 12 – Stoichiometry II

Show calculation setups and answers for all problems below.

1. Consider the balanced chemical equation to solve the following problems:

$$6 \text{ KI} + 8 \text{ HNO}_3 \rightarrow 6 \text{ KNO}_3 + 2 \text{ NO} + 3 \text{ I}_2 + 4 \text{ H}_2\text{O}$$

(a) If 26.0 g of KI are reacted, how many grams of I₂ will be formed?

(b) What volume of NO gas, measured at STP, will be produced if 39.0 g of HNO₃ are reacted?

(c) How many milliliters of 6.00 M HNO₃ will react with 26.0 g of KI?

(d) When the reaction produces 0.500 g of NO, how many molecules of I_2 will be produced?

(e) How many grams of iodine can be obtained by reacting 25.0 mL of 0.350 M KI solution?

2. Consider the Haber Process for the synthesis of ammonia shown below. Use the given equation to solve the following problems:

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

(a) If 4.0 g of H₂ react, how many grams of NH₃ will be formed?

(b) When 3.25 mol of N₂ react, what volume of NH₃, measured at STP, will be formed?

(c) What volume of NH₃ will be formed when 16.0 L of H₂ are reacted at STP?

(d) How many molecules of NH₃ will be formed when 20.0 L of N₂ react at STP?

(e) What volume of NH_3 , measured at 35 °C and 720. torr, will be produced from 12.0 g of H_2 ?

(f) If a mixture of 14.0 L of N_2 and 24.0 L of H_2 are reacted, what volume of NH_3 can be produced at STP?

Na	ame: Section:
	Workshop 13 – Solution Concentrations
	now calculation setups and answers for all problems below. What is the percent composition by mass of a solution made by dissolving 25.0 g of sodium phosphate, Na ₃ PO ₄ , in 50.0 g of water?
	Na ₃ PO ₄
2.	H_2O How many moles of magnesium hydroxide, $Mg(OH)_2$ are required to prepare 2.50 L of a 0.350 M solution?
3.	Determine the molarity of a solution if 2.75 g of potassium hydroxide, KOH, are dissolved in water to make 250. mL of solution.
4.	How many milliliters of a 0.250 M solution can be prepared by dissolving 4.00 g of NaCl in water?
5.	How many grams of lithium bromide, LiBr, could be recovered by evaporating 550. mL of 20.0 percent LiBr solution to dryness ($d = 1.34 \text{ g/mL}$)?

Name:	Section:	

6. How many milliliters of 6.0 M HCl is needed to prepare 500. mL of a 0.150 M HCl solution?

7. A sample of potassium hydrogen phthalate, HKC₈H₄O₄, weighing 0.512 g was dissolved in water and titrated with 24.82 mL of an NaOH solution. Calculate the molarity of the NaOH solution.

8. How many grams of hydrogen nitrate are in 75. mL of concentrated (18 M) HNO₃ solution?

9. A sulfuric acid solution has a density of 1.49 g/mL and contains $32 \text{ percent H}_2SO_4$ by mass. What is the molarity of this solution?

._____

10. Oxalic acid reacts with sodium hydroxide according to the following equation:

$$H_2C_2O_4 \ + \ 2 \ NaOH \ \rightarrow \ Na_2C_2O_4 \ + \ 2 \ H_2O$$

A 25.00 mL sample of the $H_2C_2O_4$ solution required 19.62 mL of 0.341 M NaOH for neutralization. Calculate the molarity of the acid.

Workshop 14 – Trends on the Periodic Table

Exercise I

This chart represents the main group (representative elements) portion of the periodic table.

- A. Several trends are listed to the sides and below the chart. Use a periodic table with proper values to determine the direction of these trends. Convert the underlines into arrows by adding heads (i. e. \rightarrow or \leftarrow) to each underline to indicate the direction of each trend.
- B. In each box, write the electronic configuration of the valence electrons of that element. See the box containing element 84 (polonium) as an example.

	IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA or 0		
	3	4	5	6	7	8	9	10		
<u>Atomic Radii Increase</u> <u>Metallic Properties Increase</u>	11	12	13	14	15	16	17	18		
Atomic Radii Increase tallic Properties Incre	19	20	31	32	33	34	35	36		
nic Ra c Prop	37	38	49	50	51	52	53	54		
Ator Metalli	55	56	81	82	83	84 6s ² 6p ⁴	85	86		
	87	88	Nonmetallic Properties Increase							
	Atomic Radii Increase Ionization Energy Increase									

Electronegativity Increase

Exercise II Fill in the blank spaces.

Group Number	IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
Number of valence electrons				4				
Electronic configuration of valence electrons. Omit principle quantum number.				s^2p^2				
Common oxidation states				±4				

Name:					;	Section:			
punc									
atomic numbers of the elements and the electronic configurations of the last ground									
s of the			$3p^4$						
guration									
c config					$5p^2$				$5\mathrm{f}^{10}$
lectroni		5 2p ¹							
nd the e		w							
ments a									
the ele									
ibers of						5d ⁷			
nic nun									
the ator									
le with t.									
odic tab									
s peric				2				28	06
on this				3d ²		72	104		
[e boxes n to be						57	68		
Exercise III Fill in all the boxes on this periodic table with the state electron to be added to the element.		4 2s ²				99	88		
Exer Fill i	$1s^1$				5s ¹				

Write the formulas and the names of the compounds formed by combining these ions.	HSO_4 S* OH- I*						
	PO_4^{3-}						
	CO_3^{2-}						
	ClO ₃ -						
	NO_3						
	SO_4^{-2}						
Write t		NH4+	Na*	Mg*	AI*	Cu+2	$\mathrm{Fe^{+3}}$

* Predict the oxidation number and write it on the symbol.