Name:	e:	Section:
maine.	E.	Section

Workshop 12 – Stoichiometry II

Show calculation setups and answers for all problems below.

1. Consider the balanced chemical equation to solve the following problems:

$$6 \text{ KI} + 8 \text{ HNO}_3 \rightarrow 6 \text{ KNO}_3 + 2 \text{ NO} + 3 \text{ I}_2 + 4 \text{ H}_2\text{O}$$

(a) If 26.0 g of KI are reacted, how many grams of I₂ will be formed?

(b) What volume of NO gas, measured at STP, will be produced if 39.0 g of HNO₃ are reacted?

(c) How many milliliters of 6.00 M HNO₃ will react with 26.0 g of KI?

(d) When the reaction produces 0.500~g of NO, how many molecules of I_2 will be produced?

(e) How many grams of iodine can be obtained by reacting 25.0 mL of 0.350 M KI solution?

2. Consider the Haber Process for the synthesis of ammonia shown below. Use the given equation to solve the following problems:

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

(a) If 4.0 g of H₂ react, how many grams of NH₃ will be formed?

(b) When 3.25 mol of N₂ react, what volume of NH₃, measured at STP, will be formed?

(c) What volume of NH₃ will be formed when 16.0 L of H₂ are reacted at STP?

(d) How many molecules of NH₃ will be formed when 20.0 L of N₂ react at STP?

(e) What volume of NH_3 , measured at 35 °C and 720. torr, will be produced from 12.0 g of H_2 ?

(f) If a mixture of 14.0 L of N_2 and 24.0 L of H_2 are reacted, what volume of NH_3 can be produced at STP?
