Name: _____

Section: _____

Workshop 9 – Mole Conversions

Show calculation setups and answers for all problems below. Use scientific notation for very large or very small numbers.

1. Find the molar mass of (a) carbonic acid, H₂CO₃; (b) aluminum sulfate, Al₂(SO₄)₃; and (c) ammonium dichromate, (NH₄)₂Cr₂O₇.

(a) _____

(b)_____

(c) _____

2. A sample of nickel(II) phosphate, Ni₃(PO₄)₂, weighs 114 g. How many moles are in this sample?

3. What is the mass (in kg) of 35.6 moles of methane gas, CH₄?

4. Calculate the molecules of copper(II) nitrite, Cu(NO₂)₂, in 0.92 mol Cu(NO₂)₂.

5. How many molecules of water, H_2O , are present in 28.4 g of H_2O ?

6. Find the weight (in mg) of one atom of gold, Au.

7. Determine the weight (in g) of nitrogen atoms in 6.14×10^{30} molecules of dinitrogen tetroxide, N₂O₄.

8. Calculate the percent composition by mass of aluminum hydroxide, Al(OH)₃.

Al	 	 	
0	 	 	
Н			

 Caffeine, a compound found in coffee, tea, and cola drinks is found to contain 49.47% C, 5.19% H, 28.86% N, and 16.48% O by mass. Its experimentally determined molar mass is 194 g/mol. What is the empirical formula of caffeine? What is its molecular formula?

Empirical _____

Molecular _____

10. How many mL of liquid mercury (Hg) with a density of 13.6 g/mL must you dispense to have 1.56×10^{-3} mol?