N	ame:

Section: _____

Data and Calculations

Diameter: cm	Radius:	cm	Height (cylinder part):	cm
Volume (cylinder part): SHOW CALCULATION	cm ³	Volum SHO	e (half-sphere part): W CALCULATION:	cm ³
Total Volume (sum):	cm ³	Volum	e (graduated cylinder):	mL

		D	
Average Volume:	mL	Percent Difference: %	
SHOW CALCULATION:		SHOW CALCULATION:	

Part 2

Mass of Metal Cylinder _		
Diameter	Length	Volume calipers
Volume _{water}	Volume _{metal + water}	Volume water displacement
Density of the Cylinder:	calipers:	water displacement:
Handbook Density		
Identity of Metal		
% Error:	calipers:	water displacement:
SHOW CALCULATION	IS:	

Name:			Section:				
Part 3			Unknown Number				
Mass of Flask with stopper			Initial Buret reading				
Sample	Mass Flask+Stopper+Liquid (g)	Mass Liquid Only (g)	Final Buret Reading (mL)	Net Volume (mL)	Density (xm) (g / mL) 4 sig. figs.	$\frac{d}{(x_m-\bar{x})}$	d ²
1							
2							
3							
4							
5							
6							
		1		sum of x _r	n:	sum of d ² :	

Show your calculation of the standard deviation, s, from d² below:

Mean value (x):

Standard Deviation (s):

Range: _____

% NaCl from Table: _____

Post-lab Questions

1. Calculate the density of a pure gold sphere with a diameter of 2.120 cm and a mass of 94.19 g.

2. The density of aluminum is 2.70 g/cm^3 . Calculate the thickness of a rectangular sheet of aluminum foil with a width of 11.5 cm, a length of 14.0 cm, and a mass of 2.04 g.

3. Examine your results from your data table in Part 3. Do you have any values for the density of the salt solution that lie OUTSIDE the range $(\bar{x} \pm 2s)$? If so, list them here:

Recalculate \bar{x} by omitting values that lie OUTSIDE the range. This is the density value you should use to determine your experimental % NaCl.

Pre-lab Questions

Upon reading the procedure in preparation for this experiment, you should also answer the following questions:

1. Consider Example One in the laboratory discussion. Since measurement 8 lies outside the range, it may be omitted in the calculation of the reported value. Omit measurement 8 and recalculate the mean (\bar{x}) . Fill in the d and d² columns in the table, then calculate the standard deviation (s) and the range.

Balance Number	Mass $(g) = x_m$	$\mathbf{d} = \mathbf{x}_{\mathbf{m}} - \overline{\mathbf{x}}$	d^2
1	24.29		
2	24.26		
3	24.17		
4	24.31		
5	24.28		
6	24.19		
7	24.33		
8 – OMITTED	24.50		
9	24.30		
10	24.23		
sum of x _m :		sum of d ² :	

Recalculated mean (\bar{x}) , without measurement 8:

Recalculated standard deviatiation (s): ______ and range: ______

SHOW CALCULATIONS:

- 2. Now consider Example Two in the laboratory discussion. The student doing the titration repeated the experiment twice more. The following five values were obtained: 0.555 M, 0.565 M, 0.564 M, 0.567 M, and 0.563 M.
 - A. Use the *Q* Test to demonstrate that the first value should be rejected.
 - B. Recalculate the values for \bar{x} , omitting the value 0.555 M. Compare with the original value of \bar{x} .