Name:	Section:	
	Workshop #11: Intermolecular Forces	

For the first part of this workshop, identify the type of crystal structure (Ionic, Molecular Polar, Molecular Nonpolar, Network-Covalent, or Metallic) present. Then determine the type of binding forces present in each (Ionic Bonds, Covalent Bonds, Metallic Bonds, London Dispersion Forces, Dipole Forces, and/or Hydrogen Bonds).

Substance	Type of Crystal	Type of Binding Force(s)
Ar		
CH₃Cl		
СН₃ОН		
BCl ₃		
CH ₃ OCH ₃		
HF		
Нд		
KCl		
N ₂		
SiC		
СН₃СООН		
Diamond		

Na	me:	Section:
Cir	cle the species with the higher b	oiling point and <i>briefly</i> justify your choice below.
1)	Kr	or Xe
2)	C ₂ H ₅ OH Justification:	or CH ₃ OCH ₃
3)	NaF Justification:	or MgO
4)	N ₂	or NO
5)	CH ₄ Justification:	or SiH ₄
6)	HF Justification:	or HI
7)	CO ₂	or NH ₃
8)	CH ₄	or CCl ₄
9)	Cr	or Si
10)	H ₂ O Justification:	or SiO ₂
11)	MgO Justification:	or BaO
12)	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ Justification:	or (CH ₃) ₂ CHCH ₂ CH ₃