Name: _____

Section: _____

Data and Calculations	Trial 1	Trial 2				
Mass of empty calorimeter		=g				
Mass of calorimeter + water		g				
Mass of calorimeter + water + solid (final mas	ss)	g				
Mass of solution		g				
Mass of solid (solute)		g				
Initial temperature		°C				
Final temperature		°C				
ΔT		°C				
$Q_{solution} = (m \ s \ \Delta T)_{solution}$		J				
$Q_{rxn} = -Q_{solution}$		J				
Calculate the heat of reaction, ΔH , per gram of solid						
$\Delta H_{\text{reaction}} = \frac{Q_{\text{rxn}}}{\text{mass}_{\text{solute}}}$ $J / g \text{ (trial 1)* and } J / g \text{ (trial 2)*}$						
* <u>Note</u> : These values should be within 5% of each other or another trial should be done.						
Average ΔH per gram J / g						
Molecular Formula of Solid	cular Formula of Solid Molecular Weight					
Calculate the molar heat of solution, ΔH , for this solid. Use the average ΔH value.						
	$\Delta H_{reaction}$	kJ / mol				
Calculate the % error for the above value. (Literature values: Na ₂ CO ₃ Δ H _{reaction} = -28.1 kJ / mol; NH ₄ NO ₃ Δ H _{reaction} = +25.7 kJ / mol)						
Theoretical $\Delta H_{reaction}$	kJ / mol	% error				

Post-Lab Questions: Heat of Solution

1. A metal sample weighing 63.2 g with a temperature of 100.0 $^{\circ}$ C was placed in a calorimeter containing 41.0 g of water at 24.5 $^{\circ}$ C. The equilibrium temperature of the water and metal was found to be 35.0 $^{\circ}$ C.

A. What was ΔT for the water? ($\Delta T = T_{\text{final}} - T_{\text{initial}}$)	°C

- B. What was ΔT for the metal? _____°C
- C. Taking the specific heat of water to be 4.184 J / g $^\circ$ C, calculate the specific heat of the metal using Eq. 5.

J	/	g	°C

- 2. When 5.00 g of KNO₃ were dissolved in 49.00 g H₂O at 24.00 °C inside a calorimeter, the temperature of the resulting solution fell to 15.60 °C.
 - A. Is this reaction endothermic or exothermic?
 - B. Calculate the heat lost or gained by the solution chemicals (this is Q_{soln}) in the calorimeter.

 $Q_{soln} =$ _____ Joules

C. What is Q_{rxn} for the reaction that occurred?

 $Q_{rxn} =$ _____ Joules

D. Calculate the heat of this reaction, ΔH , in Joules/g KNO₃.

 $\Delta H_{rxn} =$ _____ Joules / g

E. Calculate the molar heat of this reaction, ΔH , in kJ/mol KNO₃.

 $\Delta H_{rxn} = ___kJ / mole$