Name: \qquad

Data and Calculations

Trial 1 Trial 2
Mass of empty calorimeter
Mass of calorimeter + water
Mass of calorimeter + water + solid (final mass)
Mass of solution
Mass of solid (solute)
Initial temperature
Final temperature
ΔT
$\mathrm{Q}_{\text {solution }}=(\mathrm{m} \mathrm{s} \Delta \mathrm{T})_{\text {solution }}$
$\mathrm{Q}_{\mathrm{rxn}}=-\mathrm{Q}_{\text {solution }}$
Calculate the heat of reaction, $\Delta \mathrm{H}$, per gram of solid

Section: \qquad
\qquad
\qquad
_ $\quad \mathrm{g}$
\qquad
$\underline{\square}$ \qquad g
\qquad ${ }^{\circ} \mathrm{C}$

$$
\Delta \mathrm{H}_{\text {reaction }}=\frac{\mathrm{Q}_{\mathrm{rxn}}}{\operatorname{mass}_{\text {solute }}}
$$

$$
\mathrm{J} / \mathrm{g}(\text { trial } 1)^{*} \text { and }
$$

\qquad $\mathrm{J} / \mathrm{g}(\text { trial } 2)^{*}$

* Note: These values should be within 5\% of each other or another trial should be done.

Average $\Delta \mathrm{H}$ per gram \qquad J/g

Molecular Formula of Solid \qquad Molecular Weight \qquad
Calculate the molar heat of solution, $\Delta \mathrm{H}$, for this solid. Use the average $\Delta \mathrm{H}$ value.
$\Delta \mathrm{H}_{\text {reaction }}$ \qquad kJ / mol

Calculate the \% error for the above value.
(Literature values: $\mathrm{Na}_{2} \mathrm{CO}_{3} \Delta \mathrm{H}_{\text {reaction }}=-28.1 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{NH}_{4} \mathrm{NO}_{3} \Delta \mathrm{H}_{\text {reaction }}=+25.7 \mathrm{~kJ} / \mathrm{mol}$)

Theoretical $\Delta \mathrm{H}_{\text {reaction }}$ \qquad kJ / mol \% error \qquad
\qquad
\qquad

Post-Lab Questions: Heat of Solution

1. A metal sample weighing 63.2 g with a temperature of $100.0{ }^{\circ} \mathrm{C}$ was placed in a calorimeter containing 41.0 g of water at $24.5^{\circ} \mathrm{C}$. The equilibrium temperature of the water and metal was found to be $35.0^{\circ} \mathrm{C}$.
A. What was $\Delta \mathrm{T}$ for the water? $\left(\Delta \mathrm{T}=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)$ \qquad ${ }^{\circ} \mathrm{C}$
B. What was $\Delta \mathrm{T}$ for the metal? \qquad
C. Taking the specific heat of water to be $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, calculate the specific heat of the metal using Eq. 5.
\qquad
2. When 5.00 g of KNO_{3} were dissolved in $49.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $24.00^{\circ} \mathrm{C}$ inside a calorimeter, the temperature of the resulting solution fell to $15.60^{\circ} \mathrm{C}$.
A. Is this reaction endothermic or exothermic?

Explain:
B. Calculate the heat lost or gained by the solution chemicals (this is $\mathrm{Q}_{\text {soln }}$) in the calorimeter.

$$
\mathrm{Q}_{\text {soln }}=\ldots \text { Joules }
$$

C. What is $\mathrm{Q}_{\mathrm{rxn}}$ for the reaction that occurred?
$\mathrm{Q}_{\mathrm{rxn}}=$ \qquad Joules
D. Calculate the heat of this reaction, $\Delta \mathrm{H}$, in Joules $/ \mathrm{g} \mathrm{KNO}_{3}$.

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=
$$

\qquad Joules / g
E. Calculate the molar heat of this reaction, $\Delta \mathrm{H}$, in $\mathrm{kJ} / \mathrm{mol} \mathrm{KNO}_{3}$.

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=\ldots \mathrm{kJ} / \mathrm{mole}
$$

