Name:	Section:

Pre-Lab Questions: Determination of an Equivalent Mass by Electrolysis

1. In an electrolysis cell similar to the one employed in this experiment, a student observed that his unknown metal anode lost 0.233 g while a total volume of 94.50 mL of H₂ was being produced. The temperature in the laboratory was 25 °C, and the barometric pressure was 740 mm Hg. At 25 °C, the vapor pressure of water is 23.8 mm Hg. To find the equivalent mass of his metal, the student filled in the blanks below:

 $P_{hydrogen\ gas} = P_{bar} - VP_{water} = \underline{\qquad} mm\ Hg = \underline{\qquad} atm$ $V_{hydrogen\ gas} = \underline{\qquad} mL = \underline{\qquad} L$

T = _____ K

 $n_{\text{hydrogen gas}} = \underline{\hspace{1cm}} \text{moles}$

1 mol H₂ requires passage of ______ faradays

Faradays passed (moles of electrons) = _____

Loss of mass of metal anode = _____ g

Grams of metal lost per faraday passed = grams lost/faradays passed =

_____ g = GEM

The student was told that the identity of the metal anode is copper.

MM $Cu = \underline{\hspace{1cm}}$ g. The charge n on the Cu ion is $\underline{\hspace{1cm}}$. (Eq. 3)

Name:	Section:
Data and Calculations: Determination of an Equivalent	t Mass by Electrolysis
Mass of metal anode	g
Mass of anode after first electrolysis	g
Mass of anode after second electrolysis	g
Initial buret reading	mL
Buret reading after first electrolysis	mL
Initial buret reading for the second electrolysis	mL
Buret reading after second electrolysis	mL
Barometric pressure	mmHg
Temperature <i>T</i>	°C
Vapor pressure of H ₂ O at T	mmHg
Total volume of H ₂ produced, V	mL
Temperature <i>T</i>	K
Pressure exerted by dry H_2 : $P = P_{bar} - VP_{water}$ (ignore any pressure effect due to liquid levels in the burner)	ret) mmHg
Moles of H ₂ produced, n	moles
Faradays passed (moles of electrons)	
Loss in mass by anode	g
Equivalent mass of metal (GEM = g lost / faradays passe	ed) g
Unknown metal number	
Metal	
MM	g
Charge <i>n</i> on cation (equation 3)	

Na	Name: Section:	
Pr	Pre-Lab Questions: Determination of an Equivalent Mass by Electrolysis	
1.	1. In ordinary units, the faraday is equal to 96,485 coulombs. A coulomb is the electricity passed when a current of one ampere flows for one second. Given on an electron, 1.6022×10^{-19} coulombs, calculate a value for Avogadro's number of the electron of the elec	the charge
2.	2. Consider the electrolysis of Na ₂ SO ₄ (aq). Write the overall net ionic equation for this electrolysis. Note: Consider all the possible reactions; the oxidation sulfate ions, the reduction of water or sodium ions. Determine which is moroccur.	of water or