Data for Part A: Clearly show calculations o	n another space	(s) = 3.70	J/g°C
Mass of Mg			
Mass of Empty Calorimeter + Lid		=	
Mass of Calorimeter + Lid + Final Solution _			
Initial Temperature of HCl Solution			
Final Temperature of Solution			
Mass of Final Solution			
ΔT of Solution			
ΔH for reaction Part A , kJ/mole Mg			
Average ΔH_A			kJ / mol Mg
Data for Part B: Clearly show calculations o	n another space,	(s) = 3.70	J / g °C
Mass of Empty Calorimeter + Lid		= _	
Mass of Calorimeter + Lid + Final Solution			
Mass of Weighing Dish			
Mass of Weighing Dish + MgO			
Initial Temperature of HCl			
Final Temperature of Solution			
ΔT of Solution			
Mass of MgO			
Mass of Final Solution			
Δ H for reaction Part B , kJ / mole MgO			
Average ΔH_B			kJ / mol MgO

Section: _____

Data Analysis and Calculations

Use Hess's Law and the following information to determine the heat of formation of MgO:

A.	$\begin{array}{l} Mg(s)+2 \; HCl \; (aq) \rightarrow H_2(g) + MgCl_2(aq) \\ (\textbf{Part A}) \end{array}$	$\Delta H_A =$
B.	$\begin{array}{l} MgO(s)+2 \ HCl \ (aq) \rightarrow H_2O(l) + MgCl_2(aq) \\ (\textbf{Part B}) \end{array}$	$\Delta H_B = _$
C.	Write the formation equation for liquid water	$\Delta H_{f}^{\circ} =$

- D. Write the formation equation for MgO(s)
- E. Use Hess's Law and the above information to calculate the heat of formation for MgO(s). Show all your work.

F. Look up the literature value of ΔH_f° for MgO and calculate the % error.

Theoretical ΔH_f° MgO _____ kJ / mol % error _____

Use appendix for value