N	ame:
τ,	unit.

Data and Calculations

Wavelength of maximum absorbance is ______.

[Co ⁺²]	Volume of 0.100 M Co(NO ₃) ₂ Stock Solution	ABSORBANCE
<u>0.1000 M</u>	mL	
<u>0.0800 M</u>	mL	
<u>0.0600 M</u>	mL	
<u>0.0400 M</u>	mL	
<u>0.0200 M</u>	mL	
<u>0.0000 M</u>	mL	

UNKNOWN # _____ ABSORBANCE _____

Path length of the cuvette: _____

Using Microsoft Excel, plot a graph of absorbance (y) verses concentration (x). Using the graph plotted from your data and the path length of the cuvette, calculate the extinction coefficient.

Extinction Coefficient:

Solve for the concentration on your unknown solution...

(a) [Co⁺²] _____(read from graph)

(b) [Co⁺²] _____ (calculate from line equation and slope value)

SHOW CALCULATIONS:

Post-Lab Questions: Colorimetric of Co⁺²

1. Calculate the transmittance of a solution if its absorbance is 0.352.

2. Calculate the absorbance of a solution if the transmittance is 0.647.

3. The following absorbance values for four solutions with known MnO₄⁻ concentrations were measured using a spectrophotometer:

Solution	[MnO4 ⁻]	Absorbance
1	$0.700 \ge 10^{-4} M$	0.175
2	$1.00 \ge 10^{-4} M$	0.250
3	2.00 x 10 ⁻⁴ M	0.500
4	3.50 x 10 ⁻⁴ M	0.875

- A. Using Microsoft Excel, plot a graph of Absorbance vs. Concentration of MnO_4^- . Write the trendline linear equation from the plotted graph.
- B. Determine the slope of the graph and include its units.
- C. Determine the concentration of an unknown MnO_4^- sample whose absorbance is 0.780.

D. Using the graph paper, below, construct a graph of Absorbance vs Concentration of MnO_4^- . Draw a linear trendline and determine the equation of the line that you drew. How does this compare to the graph that you made using Excel?

