Name:	Section:
-------	----------

Pre-Lab Questions: Equilibrium Constant Determination for FeSCN⁺²

- 1. A student mixes 5.00 mL of 2.00×10^{-3} M Fe(NO₃)₃ with 5.00 mL of 2.00×10^{-3} M KSCN. She finds that in the equilibrium mixture, the concentration of FeSCN²⁺ is 1.40×10^{-4} M. Find K_c for Fe³⁺(aq) + SCN⁻(aq) = FeSCN²⁺(aq).
 - Step 1. Calculate the initial, diluted concentrations of the Fe^{3+} and SCN^- ions in the total of 10.00 ml solution using $M_1V_1=M_2V_2$

$[Fe^{3+}]_{\underline{\hspace{1cm}}}$	[SCN-]
[10]	

Step 2. Use the initial concentrations of the Fe^{3+} and SCN^- ions along with the equilibrium concentration of the $FeSCN^{2+}$ ion and the reaction stoichiometry to determine the equilibrium concentrations of Fe^{3+} and SCN^- .

$$[Fe^{3+}] + [SCN^-] \leftrightarrows [FeSCN^{2+}]$$
 initial
$$\Delta = 0$$
 equil
$$0$$

Step 3. Solve for the value of K_c for the reaction. (Use Eq. 2 and the results of Step 2.)

 $K_c = \underline{\hspace{1cm}}$

Name: ______ Section: ____

							K					
	Absorbance						⇒ [FeSCN ⁺²]					
ation of FeSCN ⁺²	Vol. of H_2O (in mL)	4.00	3.00	2.00	1.00	0.00	Equilibrium Concentrations [Fe ⁺³] + [SCN ⁻]					
Constant for the Formation of $FeSCN^{+2}$	Vol. of 2.00×10^{-3} M KSCN (in mL)	1.00	2.00	3.00	4.00	5.00	Equilibrium [Fe ⁺³]					
Data: Determination of the Equilibrium C	Vol. of 2.00×10^{-3} M Vol. of 2.00×10^{-3} M Vol. of H_2O Fe(NO ₃) ₃ (in mL) KSCN (in mL) (in mL)	5.00	5.00	5.00	5.00	5.00	Initial Concentrations AFTER MIXING [Fe ⁺³] [SCN ⁻]					
Data: Detern	Mixture	-	2	æ	4	S	Mixture	1	7	κ	4	\mathcal{S}

Hint: Set up each mixture as shown in the pre-lab Reaction-Initial-Change-Equilibrium

Name:	Section:
-------	----------

Post-Lab Questions: Determination of the Equilibrium Constant for the Formation of $FeSCN^{+2}$

1. Are the K_c values on the previous page consistent? If not, suggest a reason for any large differences.

2. In carrying out this analysis, we made the assumption that the reactants were reacting as a 1:1 mole ratio, as given by Equation 1. There is no inherent reason why the reaction might not have been a 1:2 mole ratio:

$$Fe^{3+}(aq) + 2 SCN^{-}(aq) \rightleftharpoons Fe(SCN)_{2}^{+}(aq)$$
(3)

a. Fill in the equilibrium values in the chart below using your experimental data and this new reaction ratio:

Reaction	$Fe^{+2}(aq)$ +	$2 \text{ SCN}^-(aq) \rightleftharpoons$	$Fe(SCN)_2^+(aq)$
test tube 1 mixture			
at equilibrium			
test tube 5 mixture			
at equilibrium			

b. Calculate the value of K_c using the data from the test tube 1 mixture, assuming that the reaction is actually the one shown in equation 3.

c. Calculate the value of K_c using the data from the test tube 5 mixture, assuming that the reaction is actually the one shown in equation 3.

d. Compare the K_c values that you calculated in parts a and b above. Are they consistent? Do you think Reaction 3 is occurring?