| Name: | Section: | |-------|----------| |-------|----------| **Pre-Lab Questions**: Equilibrium Constant Determination for FeSCN⁺² - 1. A student mixes 5.00 mL of 2.00×10^{-3} M Fe(NO₃)₃ with 5.00 mL of 2.00×10^{-3} M KSCN. She finds that in the equilibrium mixture, the concentration of FeSCN²⁺ is 1.40×10^{-4} M. Find K_c for Fe³⁺(aq) + SCN⁻(aq) = FeSCN²⁺(aq). - Step 1. Calculate the initial, diluted concentrations of the Fe^{3+} and SCN^- ions in the total of 10.00 ml solution using $M_1V_1=M_2V_2$ | $[Fe^{3+}]_{\underline{\hspace{1cm}}}$ | [SCN-] | |--|--------| | [10] | | Step 2. Use the initial concentrations of the Fe^{3+} and SCN^- ions along with the equilibrium concentration of the $FeSCN^{2+}$ ion and the reaction stoichiometry to determine the equilibrium concentrations of Fe^{3+} and SCN^- . $$[Fe^{3+}] + [SCN^-] \leftrightarrows [FeSCN^{2+}]$$ initial $$\Delta = 0$$ equil $$0$$ Step 3. Solve for the value of K_c for the reaction. (Use Eq. 2 and the results of Step 2.) $K_c = \underline{\hspace{1cm}}$ Name: ______ Section: ____ | | | | | | | | K | | | | | | |--|---|------|------|------|------|------|---|---|---|----------|---|---------------| | | Absorbance | | | | | | ⇒ [FeSCN ⁺²] | | | | | | | ation of FeSCN ⁺² | Vol. of H_2O (in mL) | 4.00 | 3.00 | 2.00 | 1.00 | 0.00 | Equilibrium Concentrations [Fe ⁺³] + [SCN ⁻] | | | | | | | Constant for the Formation of $FeSCN^{+2}$ | Vol. of 2.00×10^{-3} M KSCN (in mL) | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | Equilibrium [Fe ⁺³] | | | | | | | Data: Determination of the Equilibrium C | Vol. of 2.00×10^{-3} M Vol. of 2.00×10^{-3} M Vol. of H_2O Fe(NO ₃) ₃ (in mL) KSCN (in mL) (in mL) | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | Initial Concentrations AFTER MIXING [Fe ⁺³] [SCN ⁻] | | | | | | | Data: Detern | Mixture | - | 2 | æ | 4 | S | Mixture | 1 | 7 | κ | 4 | \mathcal{S} | Hint: Set up each mixture as shown in the pre-lab Reaction-Initial-Change-Equilibrium | Name: | Section: | |-------|----------| |-------|----------| ## Post-Lab Questions: Determination of the Equilibrium Constant for the Formation of $FeSCN^{+2}$ 1. Are the K_c values on the previous page consistent? If not, suggest a reason for any large differences. 2. In carrying out this analysis, we made the assumption that the reactants were reacting as a 1:1 mole ratio, as given by Equation 1. There is no inherent reason why the reaction might not have been a 1:2 mole ratio: $$Fe^{3+}(aq) + 2 SCN^{-}(aq) \rightleftharpoons Fe(SCN)_{2}^{+}(aq)$$ (3) a. Fill in the equilibrium values in the chart below using your experimental data and this new reaction ratio: | Reaction | $Fe^{+2}(aq)$ + | $2 \text{ SCN}^-(aq) \rightleftharpoons$ | $Fe(SCN)_2^+(aq)$ | |---------------------|-----------------|--|-------------------| | test tube 1 mixture | | | | | at equilibrium | | | | | test tube 5 mixture | | | | | at equilibrium | | | | b. Calculate the value of K_c using the data from the test tube 1 mixture, assuming that the reaction is actually the one shown in equation 3. c. Calculate the value of K_c using the data from the test tube 5 mixture, assuming that the reaction is actually the one shown in equation 3. d. Compare the K_c values that you calculated in parts a and b above. Are they consistent? Do you think Reaction 3 is occurring?