\qquad

Pre-Lab Questions: Buffers and Determination of Equivalent Mass and K_{a} of an Unknown Acid

1. What is the equivalent mass of each of the following acids?
2. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
3. KHCO_{3}
4. $\mathrm{H}_{2} \mathrm{SO}_{3}$

4. $\mathrm{H}_{3} \mathrm{PO}_{4}$

2. It is found that 24.6 mL of 0.116 M NaOH is needed to titrate 0.293 g of an unknown acid to the phenolphthalein end point. Calculate the equivalent mass of the acid.
\qquad
\qquad

Data and Questions

Part 1A: pH of Unknown and Buffer Solutions

Enter in the appropriate space the name of the indicator used, the observed color of unknown after addition of the indicator, and the estimated pH value from the pH paper for the unknown.

Liquid Unknown \#: \qquad
pH paper estimate: \qquad (3-pH unit range)

Indicator Used	Color of Unknown	Color of Buffer $\mathrm{pH}=$	Color of Buffer $\mathrm{pH}=$	Color of Buffer $\mathrm{pH}=$ 信

Estimate pH based on matching of colors $=$ \qquad (within 0.5 pH unit)

Part 1B: pH of Acetic Acid Solutions

(Note: $\mathrm{HAc}=\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, acetic acid).

	$1.0 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$0.010 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
pH			
Ka			
$\%$ dissociation			

SHOW YOUR CALCULATIONS ON THE NEXT PAGE.

Name: \qquad Section: \qquad
$1.0 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (aq):
$0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$:
$0.010 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}):$
\qquad

Part 2: pH of Salt Solutions

1. PREDICT whether each of the salt solutions below is expected to be acidic, neutral, or basic:

NaCl \qquad
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ \qquad
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ \qquad
$\mathrm{NH}_{4} \mathrm{Cl}$ \qquad
KNO_{3} \qquad
ZnCl_{2} \qquad
2. Using the pH meter immersed in each salt solution, determine the actual pH :

$$
\mathrm{NaCl}
$$

$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ \qquad $\mathrm{Na}_{2} \mathrm{CO}_{3}$ \qquad
$\mathrm{NH}_{4} \mathrm{Cl}$ \qquad
KNO_{3} \qquad
ZnCl_{2} \qquad
3. Write balanced MOLECULAR, IONIC, and NET-IONIC equations for the hydrolysis reactions of each salt solution. From the net-ionic equation, verify that the reaction is acidic, neutral or basic.
A. $\quad \mathrm{NaCl}(\mathrm{aq})$:

Molecular:
acidic neutral
or
Ionic:
basic?

Net-Ionic:

B. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$

Molecular:

Ionic:

Net-Ionic:

Name: \qquad
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

Molecular:

Ionic:

Net-Ionic:

D. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$

Molecular:

Ionic:

Net-Ionic:

E. $\quad \mathrm{KNO}_{3}(\mathrm{aq})$

Molecular:

Ionic:

Net-Ionic:
F. $\quad \mathrm{ZnCl}_{2}(\mathrm{aq})$

Molecular:

Ionic:

Net-Ionic:
\qquad
\qquad

Part 3: Determination of K_{a} and Properties of a Buffer

Solid Unknown Number: \qquad

1. Original pH of the half neutralized solution: \qquad
2. Calculate K_{a} of the Weak acid:
3. Fill in table:

	tap water (original pH$)$	tap water $(\mathrm{pH}$ after $)$	Buffer $($ original pH$)$	Buffer $(\mathrm{pH}$ after)
addition of 0.1 M HCl				
addition of 0.1 M NaOH				

4. How does the table above show that the half-neutralized solution is indeed a buffer?
5. Using the data on your table above, comment on the buffering ability of your halfneutralized solution in comparison to the tap water.
6. Comment on the comparison between adding a strong acid vs a strong base to your buffer solution (i.e. is this solution more resistant to an increase or a decrease in pH ?).

Part 4: Determination of the Equivalent Mass of an Unknown Acid

Given: \qquad M NaOH

Fill in the table below

Sample	Mass unknown acid (g)	Volume NaOH used (mL)	Volume NaOH used (L)	Mol NaOH equal to $\mathrm{Mol} \mathrm{H}^{+}$	Gram Equivalent Mass of Acid (g/mol H
Trial 1					
Trial 2					
					Average GEM: $\mathrm{g} / \mathrm{mol} \mathrm{H}^{+}$

Show sample calculations below

Part 5: Determination of the K_{a} and Equivalent Mass of an Unknown Acid using LabQuest Mini

Use the same unknown sample as part 4.
Solid Unknown Number: \qquad

1. Determine the approximate mass desired to reach the equivalence point in approximately 15 ml of NaOH added.

Approximate mass to use $=(\text { mass of acid/volume of base })_{\text {part } 4 \times 15 \mathrm{ml}}$ desired
2. Mass accurately weighed into a clean, dry 150 ml beaker.
3. Using the graph, determine the volume and pH of titrant at equivalence point.

Volume \qquad pH \qquad
4. Using the graph, determine the volume and pH at the half-equivalence point.

Volume \qquad pH \qquad
\qquad Section: \qquad
5. Solve for the $\mathrm{pK}_{\mathrm{a}}, \mathrm{K}_{\mathrm{a}}$, and gram equivalent mass of your unknown acid using the data collected in part 5.

Unknown \#: \qquad
6. Calculate the average of all three GEM that you determined (two from part 4 and one from part 5).
7. Why is the equivalence point NOT at pH 7 ?
8. Identify the following areas on the weak acid/strong base titration curve.
A) Weak acid
B) Buffer zone
C) Equivalence point, salt
D) Strong base zone
E) Half equivalence point
\qquad Section: \qquad

Post-Lab Questions: Buffers and Determination of Equivalent Mass and K_{a} of an Unknown Acid

1. A buffer was prepared by mixing 50.0 mL of 0.10 M HX and 25.0 mL of 0.10 M NaOH . The K_{a} of HX is 1.5×10^{-6}. Calculate the pH of this buffer.
2. The following values were experimentally determined for the titration of 0.145 g of a weak acid with 0.100 M NaOH :

Volume of $\mathbf{N a O H}, \mathbf{m L}$	$\mathbf{p H}$
0.0	2.88
5.0	4.15
10.0	4.58
12.5	4.76
15.0	4.93
20.0	5.36
24.0	6.14
24.9	7.15
25.0	8.73
26.0	11.29
30.0	11.96

A. Construct a titration curve (pH vs Volume of NaOH).
B. Examine the graph for the required volume to reach the equivalence point?
C. Examine the graph and state the pH at the half-equivalence point?
D. Determine the K_{a} of the acid.
E. Calculate the gram equivalent mass of the acid.
\qquad
3. The following acid-base indicators are available to indicate the end point of this weak acid/strong base titration. Which of them would be most appropriate? Explain.

Indicator
Bromphenol blue Bromthymol
Thymol blue

Color Change

Acid Form
yellow
blue
yellow
pH Transition
3.0-5.0
6.0-7.6
8.0-9.6

