Section: _____

Name: _____

Data and Calculations for Experiment 11

Pressure of the air in the room:

Temperature of the air in the room:

Actual Volume	1 / Volume	Pressure * Vol.	Plunger	Pressure
(mL)	(mL ⁻¹)	$= k (Pa \cdot L)$	Position	(kPa)
			5	
	hes	e	6	
			7	
V		e	8	
	oulo	tod	9	
Cal	cula	leu	10	
in	Fvoo	R	11	
111	LACC		12	
Sub	mit s	MIP	13	
DUD	JIII J	vui	14	
snr	pade	neet	15	
spr			16	
an	d vo	nr	17	
	JU		18	
Ø	ranh	S.	19	
5			20	

Average *k* = _____

Questions

- 1) On your <u>linear graph</u>, do any points deviate from the straight line?
- 2) Write down the equation of the trendline (y = mx + b) from your linear graph. How does the slope (m) compare to the average P*V=*k* value from the table of data?
- 3) Using the equation of your trendline, solve for the pressure at a volume of 2.0 mL. *Hint:* x = 1/V in your equation!
- 4) Why must the temperature be constant during this experiment? Use observations from your experiment and the graphs to support your answer!
- 5) If you repeated this experiment at a higher temperature, how would the P vs. V curve obtained differ from the curve on your 1st graph?
- 6) You have a 1.00 L sample of Argon gas at 700.0 mmHg. You decrease the pressure to 500.0 mmHg. What is the new volume?
- 7) Describe (quantitatively) what you would do to the volume of a container of gas if you wanted to double the pressure inside.